Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-part Structured version   Visualization version   GIF version

Definition df-part 36980
Description: Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 36983. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 36987. (Contributed by Peter Mazsa, 12-Aug-2021.)
Assertion
Ref Expression
df-part (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))

Detailed syntax breakdown of Definition df-part
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wpart 36420 . 2 wff 𝑅 Part 𝐴
42wdisjALTV 36415 . . 3 wff Disj 𝑅
51, 2wdmqs 36405 . . 3 wff 𝑅 DomainQs 𝐴
64, 5wa 397 . 2 wff ( Disj 𝑅𝑅 DomainQs 𝐴)
73, 6wb 205 1 wff (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  dfpart2  36983  dfmembpart2  36984  brpartspart  36987
  Copyright terms: Public domain W3C validator