Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-part | Structured version Visualization version GIF version |
Description: Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 36983. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 36987. (Contributed by Peter Mazsa, 12-Aug-2021.) |
Ref | Expression |
---|---|
df-part | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wpart 36420 | . 2 wff 𝑅 Part 𝐴 |
4 | 2 | wdisjALTV 36415 | . . 3 wff Disj 𝑅 |
5 | 1, 2 | wdmqs 36405 | . . 3 wff 𝑅 DomainQs 𝐴 |
6 | 4, 5 | wa 397 | . 2 wff ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) |
7 | 3, 6 | wb 205 | 1 wff (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpart2 36983 dfmembpart2 36984 brpartspart 36987 |
Copyright terms: Public domain | W3C validator |