|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-part | Structured version Visualization version GIF version | ||
| Description: Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 38770. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 38774. (Contributed by Peter Mazsa, 12-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| df-part | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wpart 38221 | . 2 wff 𝑅 Part 𝐴 | 
| 4 | 2 | wdisjALTV 38216 | . . 3 wff Disj 𝑅 | 
| 5 | 1, 2 | wdmqs 38206 | . . 3 wff 𝑅 DomainQs 𝐴 | 
| 6 | 4, 5 | wa 395 | . 2 wff ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) | 
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfpart2 38770 dfmembpart2 38771 brpartspart 38774 | 
| Copyright terms: Public domain | W3C validator |