| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-part | Structured version Visualization version GIF version | ||
| Description: Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 38792. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 38796. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| df-part | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wpart 38243 | . 2 wff 𝑅 Part 𝐴 |
| 4 | 2 | wdisjALTV 38238 | . . 3 wff Disj 𝑅 |
| 5 | 1, 2 | wdmqs 38228 | . . 3 wff 𝑅 DomainQs 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfpart2 38792 dfmembpart2 38793 brpartspart 38796 |
| Copyright terms: Public domain | W3C validator |