Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpartspart Structured version   Visualization version   GIF version

Theorem brpartspart 38765
Description: Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
brpartspart ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))

Proof of Theorem brpartspart
StepHypRef Expression
1 eldisjsdisj 38719 . . . 4 (𝑅𝑊 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
21adantl 481 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ Disjs ↔ Disj 𝑅))
3 brdmqssqs 38638 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
42, 3anbi12d 632 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
5 brparts 38763 . . 3 (𝐴𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
65adantr 480 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
7 df-part 38758 . . 3 (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
87a1i 11 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
94, 6, 83bitr4d 311 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107   DomainQss cdmqss 38192   DomainQs wdmqs 38193   Disjs cdisjs 38202   Disj wdisjALTV 38203   Parts cparts 38207   Part wpart 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677  df-coss 38402  df-rels 38476  df-ssr 38489  df-cnvrefs 38516  df-cnvrefrels 38517  df-cnvrefrel 38518  df-dmqss 38629  df-dmqs 38630  df-disjss 38695  df-disjs 38696  df-disjALTV 38697  df-parts 38757  df-part 38758
This theorem is referenced by:  mpets2  38833  pets  38844
  Copyright terms: Public domain W3C validator