Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpartspart Structured version   Visualization version   GIF version

Theorem brpartspart 38774
Description: Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
brpartspart ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))

Proof of Theorem brpartspart
StepHypRef Expression
1 eldisjsdisj 38728 . . . 4 (𝑅𝑊 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
21adantl 481 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ Disjs ↔ Disj 𝑅))
3 brdmqssqs 38648 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
42, 3anbi12d 632 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
5 brparts 38772 . . 3 (𝐴𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
65adantr 480 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
7 df-part 38767 . . 3 (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
87a1i 11 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
94, 6, 83bitr4d 311 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5143   DomainQss cdmqss 38205   DomainQs wdmqs 38206   Disjs cdisjs 38215   Disj wdisjALTV 38216   Parts cparts 38220   Part wpart 38221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751  df-coss 38412  df-rels 38486  df-ssr 38499  df-cnvrefs 38526  df-cnvrefrels 38527  df-cnvrefrel 38528  df-dmqss 38639  df-dmqs 38640  df-disjss 38704  df-disjs 38705  df-disjALTV 38706  df-parts 38766  df-part 38767
This theorem is referenced by:  mpets2  38842  pets  38853
  Copyright terms: Public domain W3C validator