![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brpartspart | Structured version Visualization version GIF version |
Description: Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
brpartspart | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjsdisj 38709 | . . . 4 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ∈ Disjs ↔ Disj 𝑅)) |
3 | brdmqssqs 38629 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | |
4 | 2, 3 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
5 | brparts 38753 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) |
7 | df-part 38748 | . . 3 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
9 | 4, 6, 8 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 DomainQss cdmqss 38185 DomainQs wdmqs 38186 Disjs cdisjs 38195 Disj wdisjALTV 38196 Parts cparts 38200 Part wpart 38201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-qs 8750 df-coss 38393 df-rels 38467 df-ssr 38480 df-cnvrefs 38507 df-cnvrefrels 38508 df-cnvrefrel 38509 df-dmqss 38620 df-dmqs 38621 df-disjss 38685 df-disjs 38686 df-disjALTV 38687 df-parts 38747 df-part 38748 |
This theorem is referenced by: mpets2 38823 pets 38834 |
Copyright terms: Public domain | W3C validator |