Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpartspart Structured version   Visualization version   GIF version

Theorem brpartspart 38772
Description: Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
brpartspart ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))

Proof of Theorem brpartspart
StepHypRef Expression
1 eldisjsdisj 38726 . . . 4 (𝑅𝑊 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
21adantl 481 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ Disjs ↔ Disj 𝑅))
3 brdmqssqs 38645 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
42, 3anbi12d 632 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
5 brparts 38770 . . 3 (𝐴𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
65adantr 480 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
7 df-part 38765 . . 3 (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
87a1i 11 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
94, 6, 83bitr4d 311 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5110   DomainQss cdmqss 38199   DomainQs wdmqs 38200   Disjs cdisjs 38209   Disj wdisjALTV 38210   Parts cparts 38214   Part wpart 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-coss 38409  df-rels 38483  df-ssr 38496  df-cnvrefs 38523  df-cnvrefrels 38524  df-cnvrefrel 38525  df-dmqss 38636  df-dmqs 38637  df-disjss 38702  df-disjs 38703  df-disjALTV 38704  df-parts 38764  df-part 38765
This theorem is referenced by:  mpets2  38840  pets  38851
  Copyright terms: Public domain W3C validator