Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpartspart Structured version   Visualization version   GIF version

Theorem brpartspart 38729
Description: Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
brpartspart ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))

Proof of Theorem brpartspart
StepHypRef Expression
1 eldisjsdisj 38683 . . . 4 (𝑅𝑊 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
21adantl 481 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ Disjs ↔ Disj 𝑅))
3 brdmqssqs 38603 . . 3 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
42, 3anbi12d 631 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
5 brparts 38727 . . 3 (𝐴𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
65adantr 480 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
7 df-part 38722 . . 3 (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
87a1i 11 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴)))
94, 6, 83bitr4d 311 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Parts 𝐴𝑅 Part 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166   DomainQss cdmqss 38158   DomainQs wdmqs 38159   Disjs cdisjs 38168   Disj wdisjALTV 38169   Parts cparts 38173   Part wpart 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769  df-coss 38367  df-rels 38441  df-ssr 38454  df-cnvrefs 38481  df-cnvrefrels 38482  df-cnvrefrel 38483  df-dmqss 38594  df-dmqs 38595  df-disjss 38659  df-disjs 38660  df-disjALTV 38661  df-parts 38721  df-part 38722
This theorem is referenced by:  mpets2  38797  pets  38808
  Copyright terms: Public domain W3C validator