| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpartspart | Structured version Visualization version GIF version | ||
| Description: Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| brpartspart | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjsdisj 38745 | . . . 4 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ∈ Disjs ↔ Disj 𝑅)) |
| 3 | brdmqssqs 38665 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
| 5 | brparts 38789 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) |
| 7 | df-part 38784 | . . 3 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
| 9 | 4, 6, 8 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 DomainQss cdmqss 38222 DomainQs wdmqs 38223 Disjs cdisjs 38232 Disj wdisjALTV 38233 Parts cparts 38237 Part wpart 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-qs 8725 df-coss 38429 df-rels 38503 df-ssr 38516 df-cnvrefs 38543 df-cnvrefrels 38544 df-cnvrefrel 38545 df-dmqss 38656 df-dmqs 38657 df-disjss 38721 df-disjs 38722 df-disjALTV 38723 df-parts 38783 df-part 38784 |
| This theorem is referenced by: mpets2 38859 pets 38870 |
| Copyright terms: Public domain | W3C validator |