Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpart2 | Structured version Visualization version GIF version |
Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfpart2 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-part 36980 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
2 | df-dmqs 36853 | . . 3 ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | |
3 | 2 | anbi2i 624 | . 2 ⊢ (( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 dom cdm 5600 / cqs 8528 DomainQs wdmqs 36405 Disj wdisjALTV 36415 Part wpart 36420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-dmqs 36853 df-part 36980 |
This theorem is referenced by: parteq1 36988 parteq2 36989 partim 37022 pet0 37029 petid 37031 petidres 37033 petinidres 37035 petxrnidres 37037 petincnvepres 37063 pet 37065 |
Copyright terms: Public domain | W3C validator |