Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpart2 Structured version   Visualization version   GIF version

Theorem dfpart2 38273
Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfpart2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))

Proof of Theorem dfpart2
StepHypRef Expression
1 df-part 38270 . 2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
2 df-dmqs 38143 . . 3 (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
32anbi2i 621 . 2 (( Disj 𝑅𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
41, 3bitri 274 1 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  dom cdm 5682   / cqs 8730   DomainQs wdmqs 37705   Disj wdisjALTV 37715   Part wpart 37720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-dmqs 38143  df-part 38270
This theorem is referenced by:  parteq1  38278  parteq2  38279  partim  38312  pet0  38319  petid  38321  petidres  38323  petinidres  38325  petxrnidres  38327  petincnvepres  38353  pet  38355
  Copyright terms: Public domain W3C validator