| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpart2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfpart2 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-part 38768 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
| 2 | df-dmqs 38641 | . . 3 ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ (( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 dom cdm 5684 / cqs 8745 DomainQs wdmqs 38207 Disj wdisjALTV 38217 Part wpart 38222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-dmqs 38641 df-part 38768 |
| This theorem is referenced by: parteq1 38776 parteq2 38777 partim 38810 pet0 38817 petid 38819 petidres 38821 petinidres 38823 petxrnidres 38825 petincnvepres 38851 pet 38853 |
| Copyright terms: Public domain | W3C validator |