| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpart2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfpart2 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-part 38803 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
| 2 | df-dmqs 38675 | . . 3 ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ (( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5616 / cqs 8621 DomainQs wdmqs 38238 Disj wdisjALTV 38248 Part wpart 38253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-dmqs 38675 df-part 38803 |
| This theorem is referenced by: parteq1 38811 parteq2 38812 partim 38845 pet0 38852 petid 38854 petidres 38856 petinidres 38858 petxrnidres 38860 petincnvepres 38886 pet 38888 |
| Copyright terms: Public domain | W3C validator |