Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpart2 Structured version   Visualization version   GIF version

Theorem dfpart2 38887
Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfpart2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))

Proof of Theorem dfpart2
StepHypRef Expression
1 df-part 38884 . 2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
2 df-dmqs 38755 . . 3 (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
32anbi2i 623 . 2 (( Disj 𝑅𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
41, 3bitri 275 1 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  dom cdm 5619   / cqs 8627   DomainQs wdmqs 38266   Disj wdisjALTV 38276   Part wpart 38281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-dmqs 38755  df-part 38884
This theorem is referenced by:  parteq1  38892  parteq2  38893  partim  38926  pet0  38933  petid  38935  petidres  38937  petinidres  38939  petxrnidres  38941  petincnvepres  38967  pet  38969
  Copyright terms: Public domain W3C validator