| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpart2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfpart2 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-part 38758 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
| 2 | df-dmqs 38630 | . . 3 ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ (( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5638 / cqs 8670 DomainQs wdmqs 38193 Disj wdisjALTV 38203 Part wpart 38208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-dmqs 38630 df-part 38758 |
| This theorem is referenced by: parteq1 38766 parteq2 38767 partim 38800 pet0 38807 petid 38809 petidres 38811 petinidres 38813 petxrnidres 38815 petincnvepres 38841 pet 38843 |
| Copyright terms: Public domain | W3C validator |