![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpart2 | Structured version Visualization version GIF version |
Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfpart2 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-part 38722 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
2 | df-dmqs 38595 | . . 3 ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | |
3 | 2 | anbi2i 622 | . 2 ⊢ (( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 dom cdm 5700 / cqs 8762 DomainQs wdmqs 38159 Disj wdisjALTV 38169 Part wpart 38174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-dmqs 38595 df-part 38722 |
This theorem is referenced by: parteq1 38730 parteq2 38731 partim 38764 pet0 38771 petid 38773 petidres 38775 petinidres 38777 petxrnidres 38779 petincnvepres 38805 pet 38807 |
Copyright terms: Public domain | W3C validator |