![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfmembpart2 | Structured version Visualization version GIF version |
Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.) |
Ref | Expression |
---|---|
dfmembpart2 | ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-membpart 37941 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
2 | df-part 37939 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ( Disj (◡ E ↾ 𝐴) ∧ (◡ E ↾ 𝐴) DomainQs 𝐴)) | |
3 | df-eldisj 37880 | . . . 4 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
4 | 3 | bicomi 223 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ElDisj 𝐴) |
5 | cnvepresdmqs 37826 | . . 3 ⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | |
6 | 4, 5 | anbi12i 625 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (◡ E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
7 | 1, 2, 6 | 3bitri 296 | 1 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ∅c0 4321 E cep 5578 ◡ccnv 5674 ↾ cres 5677 DomainQs wdmqs 37370 Disj wdisjALTV 37380 ElDisj weldisj 37382 Part wpart 37385 MembPart wmembpart 37387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8707 df-qs 8711 df-dmqs 37812 df-eldisj 37880 df-part 37939 df-membpart 37941 |
This theorem is referenced by: membpartlem19 37984 cpet 38011 mpet 38012 fences2 38018 |
Copyright terms: Public domain | W3C validator |