Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmembpart2 Structured version   Visualization version   GIF version

Theorem dfmembpart2 37732
Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
dfmembpart2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem dfmembpart2
StepHypRef Expression
1 df-membpart 37730 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
2 df-part 37728 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴))
3 df-eldisj 37669 . . . 4 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
43bicomi 223 . . 3 ( Disj ( E ↾ 𝐴) ↔ ElDisj 𝐴)
5 cnvepresdmqs 37615 . . 3 (( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)
64, 5anbi12i 627 . 2 (( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
71, 2, 63bitri 296 1 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wcel 2106  c0 4322   E cep 5579  ccnv 5675  cres 5678   DomainQs wdmqs 37159   Disj wdisjALTV 37169   ElDisj weldisj 37171   Part wpart 37174   MembPart wmembpart 37176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8707  df-qs 8711  df-dmqs 37601  df-eldisj 37669  df-part 37728  df-membpart 37730
This theorem is referenced by:  membpartlem19  37773  cpet  37800  mpet  37801  fences2  37807
  Copyright terms: Public domain W3C validator