Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmembpart2 Structured version   Visualization version   GIF version

Theorem dfmembpart2 38752
Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
dfmembpart2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem dfmembpart2
StepHypRef Expression
1 df-membpart 38750 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
2 df-part 38748 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴))
3 df-eldisj 38689 . . . 4 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
43bicomi 224 . . 3 ( Disj ( E ↾ 𝐴) ↔ ElDisj 𝐴)
5 cnvepresdmqs 38635 . . 3 (( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)
64, 5anbi12i 628 . 2 (( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
71, 2, 63bitri 297 1 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2106  c0 4339   E cep 5588  ccnv 5688  cres 5691   DomainQs wdmqs 38186   Disj wdisjALTV 38196   ElDisj weldisj 38198   Part wpart 38201   MembPart wmembpart 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746  df-qs 8750  df-dmqs 38621  df-eldisj 38689  df-part 38748  df-membpart 38750
This theorem is referenced by:  membpartlem19  38793  cpet  38820  mpet  38821  fences2  38827
  Copyright terms: Public domain W3C validator