| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfmembpart2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfmembpart2 | ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-membpart 38748 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
| 2 | df-part 38746 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ( Disj (◡ E ↾ 𝐴) ∧ (◡ E ↾ 𝐴) DomainQs 𝐴)) | |
| 3 | df-eldisj 38687 | . . . 4 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ElDisj 𝐴) |
| 5 | cnvepresdmqs 38633 | . . 3 ⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | |
| 6 | 4, 5 | anbi12i 628 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (◡ E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| 7 | 1, 2, 6 | 3bitri 297 | 1 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∅c0 4286 E cep 5522 ◡ccnv 5622 ↾ cres 5625 DomainQs wdmqs 38181 Disj wdisjALTV 38191 ElDisj weldisj 38193 Part wpart 38196 MembPart wmembpart 38198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-dmqs 38618 df-eldisj 38687 df-part 38746 df-membpart 38748 |
| This theorem is referenced by: membpartlem19 38791 cpet 38818 mpet 38819 fences2 38825 |
| Copyright terms: Public domain | W3C validator |