Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmembpart2 Structured version   Visualization version   GIF version

Theorem dfmembpart2 36984
Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
dfmembpart2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem dfmembpart2
StepHypRef Expression
1 df-membpart 36982 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
2 df-part 36980 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴))
3 df-eldisj 36921 . . . 4 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
43bicomi 223 . . 3 ( Disj ( E ↾ 𝐴) ↔ ElDisj 𝐴)
5 cnvepresdmqs 36867 . . 3 (( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)
64, 5anbi12i 628 . 2 (( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
71, 2, 63bitri 297 1 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wcel 2104  c0 4262   E cep 5505  ccnv 5599  cres 5602   DomainQs wdmqs 36405   Disj wdisjALTV 36415   ElDisj weldisj 36417   Part wpart 36420   MembPart wmembpart 36422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-dmqs 36853  df-eldisj 36921  df-part 36980  df-membpart 36982
This theorem is referenced by:  membpartlem19  37025  cpet  37052  mpet  37053  fences2  37059
  Copyright terms: Public domain W3C validator