| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfmembpart2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfmembpart2 | ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-membpart 38814 | . 2 ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | |
| 2 | df-part 38812 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ( Disj (◡ E ↾ 𝐴) ∧ (◡ E ↾ 𝐴) DomainQs 𝐴)) | |
| 3 | df-eldisj 38753 | . . . 4 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ElDisj 𝐴) |
| 5 | cnvepresdmqs 38699 | . . 3 ⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | |
| 6 | 4, 5 | anbi12i 628 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (◡ E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| 7 | 1, 2, 6 | 3bitri 297 | 1 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∅c0 4280 E cep 5513 ◡ccnv 5613 ↾ cres 5616 DomainQs wdmqs 38247 Disj wdisjALTV 38257 ElDisj weldisj 38259 Part wpart 38262 MembPart wmembpart 38264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 df-dmqs 38684 df-eldisj 38753 df-part 38812 df-membpart 38814 |
| This theorem is referenced by: membpartlem19 38857 cpet 38884 mpet 38885 fences2 38891 |
| Copyright terms: Public domain | W3C validator |