Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmembpart2 Structured version   Visualization version   GIF version

Theorem dfmembpart2 38769
Description: Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
dfmembpart2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem dfmembpart2
StepHypRef Expression
1 df-membpart 38767 . 2 ( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
2 df-part 38765 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴))
3 df-eldisj 38706 . . . 4 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
43bicomi 224 . . 3 ( Disj ( E ↾ 𝐴) ↔ ElDisj 𝐴)
5 cnvepresdmqs 38652 . . 3 (( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)
64, 5anbi12i 628 . 2 (( Disj ( E ↾ 𝐴) ∧ ( E ↾ 𝐴) DomainQs 𝐴) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
71, 2, 63bitri 297 1 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2109  c0 4299   E cep 5540  ccnv 5640  cres 5643   DomainQs wdmqs 38200   Disj wdisjALTV 38210   ElDisj weldisj 38212   Part wpart 38215   MembPart wmembpart 38217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-dmqs 38637  df-eldisj 38706  df-part 38765  df-membpart 38767
This theorem is referenced by:  membpartlem19  38810  cpet  38837  mpet  38838  fences2  38844
  Copyright terms: Public domain W3C validator