Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-parts Structured version   Visualization version   GIF version

Definition df-parts 36979
Description: Define the class of all partitions, cf. the comment of df-disjs 36918. Partitions are disjoints on domain quotients (or: domain quotients restricted to disjoints).

This is a more general meaning of partition than we we are familiar with: the conventional meaning of partition (e.g. partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 ) is what we call membership partition here, cf. dfmembpart2 36984.

The binary partitions relation and the partition predicate are the same, that is, (𝑅 Parts 𝐴𝑅 Part 𝐴) if 𝐴 and 𝑅 are sets, cf. brpartspart 36987. (Contributed by Peter Mazsa, 26-Jun-2021.)

Assertion
Ref Expression
df-parts Parts = ( DomainQss ↾ Disjs )

Detailed syntax breakdown of Definition df-parts
StepHypRef Expression
1 cparts 36419 . 2 class Parts
2 cdmqss 36404 . . 3 class DomainQss
3 cdisjs 36414 . . 3 class Disjs
42, 3cres 5602 . 2 class ( DomainQss ↾ Disjs )
51, 4wceq 1539 1 wff Parts = ( DomainQss ↾ Disjs )
Colors of variables: wff setvar class
This definition is referenced by:  brparts  36985
  Copyright terms: Public domain W3C validator