HomeHome Metamath Proof Explorer
Theorem List (p. 394 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 39301-39400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlcm1un 39301 Least common multiple of natural numbers up to 1 equals 1. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...1)) = 1
 
Theoremlcm2un 39302 Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...2)) = 2
 
Theoremlcm3un 39303 Least common multiple of natural numbers up to 3 equals 6. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...3)) = 6
 
Theoremlcm4un 39304 Least common multiple of natural numbers up to 4 equals 12. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...4)) = 12
 
Theoremlcm5un 39305 Least common multiple of natural numbers up to 5 equals 60. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...5)) = 60
 
Theoremlcm6un 39306 Least common multiple of natural numbers up to 6 equals 60. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...6)) = 60
 
Theoremlcm7un 39307 Least common multiple of natural numbers up to 7 equals 420. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...7)) = 420
 
Theoremlcm8un 39308 Least common multiple of natural numbers up to 8 equals 840. (Contributed by metakunt, 25-Apr-2024.)
(lcm‘(1...8)) = 840
 
20.25.3  Least common multiple inequality theorem
 
Theorem3factsumint1 39309* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
𝐴 = (𝐿[,]𝑈)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))       (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
 
Theorem3factsumint2 39310* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)       (𝜑 → Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
 
Theorem3factsumint3 39311* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
𝐴 = (𝐿[,]𝑈)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))       (𝜑 → Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
 
Theorem3factsumint4 39312* Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
(𝜑𝐵 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)       (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥)
 
Theorem3factsumint 39313* Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024.)
𝐴 = (𝐿[,]𝑈)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))    &   ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))       (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
 
Theoremresopunitintvd 39314 Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024.)
(𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ))       (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ))
 
Theoremresclunitintvd 39315 Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024.)
(𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ))       (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ))
 
Theoremresdvopclptsd 39316* Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024.)
(𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)       (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ 𝐴)) = (𝑥 ∈ (0(,)1) ↦ 𝐵))
 
Theoremlcmineqlem1 39317* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
 
Theoremlcmineqlem2 39318* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
 
Theoremlcmineqlem3 39319* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
 
Theoremlcmineqlem4 39320 Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 39322. (Contributed by metakunt, 10-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)    &   (𝜑𝐾 ∈ (0...(𝑁𝑀)))       (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
 
Theoremlcmineqlem5 39321 Technical lemma for reciprocal multiplication in deduction form. (Contributed by metakunt, 10-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → (𝐴 · (𝐵 · (1 / 𝐶))) = (𝐵 · (𝐴 / 𝐶)))
 
Theoremlcmineqlem6 39322* Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ)
 
Theoremlcmineqlem7 39323 Derivative of 1-x for chain rule application. (Contributed by metakunt, 12-May-2024.)
(ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)
 
Theoremlcmineqlem8 39324* Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 < 𝑁)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
 
Theoremlcmineqlem9 39325* (1-x)^(N-M) is continuous. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ (ℂ–cn→ℂ))
 
Theoremlcmineqlem10 39326* Induction step of lcmineqlem13 39329 (deduction form). (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 < 𝑁)       (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
 
Theoremlcmineqlem11 39327 Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 < 𝑁)       (𝜑 → (1 / ((𝑀 + 1) · (𝑁C(𝑀 + 1)))) = ((𝑀 / (𝑁𝑀)) · (1 / (𝑀 · (𝑁C𝑀)))))
 
Theoremlcmineqlem12 39328* Base case for induction. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
 
Theoremlcmineqlem13 39329* Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
 
Theoremlcmineqlem14 39330 Technical lemma for inequality estimate. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝐷 ∈ ℕ)    &   (𝜑𝐸 ∈ ℕ)    &   (𝜑 → (𝐴 · 𝐶) ∥ 𝐷)    &   (𝜑 → (𝐵 · 𝐶) ∥ 𝐸)    &   (𝜑𝐷𝐸)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) ∥ 𝐸)
 
Theoremlcmineqlem15 39331* F times the least common multiple of 1 to n is a natural number. (Contributed by metakunt, 10-May-2024.)
𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℕ)
 
Theoremlcmineqlem16 39332 Technical divisibility lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀𝑁)       (𝜑 → (𝑀 · (𝑁C𝑀)) ∥ (lcm‘(1...𝑁)))
 
Theoremlcmineqlem17 39333 Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024.)
(𝜑𝑁 ∈ ℕ0)       (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
 
Theoremlcmineqlem18 39334 Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
 
Theoremlcmineqlem19 39335 Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
 
Theoremlcmineqlem20 39336 Inequality for lcm lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
 
Theoremlcmineqlem21 39337 The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 4 ≤ 𝑁)       (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
 
Theoremlcmineqlem22 39338 The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 4 ≤ 𝑁)       (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
 
Theoremlcmineqlem23 39339 Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 9 ≤ 𝑁)       (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
 
Theoremlcmineqlem 39340 The least common multiple inequality lemma, a central result for future use. Theorem 3.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 16-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑 → 7 ≤ 𝑁)       (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
 
20.25.4  Logarithm inequalities
 
Theorem3lexlogpow5ineq1 39341 First inequality in inequality chain, proposed by Mario Carneiro (Contributed by metakunt, 22-May-2024.)
7 < ((3 / 2)↑5)
 
Theorem3lexlogpow5ineq2 39342 Second inequality in inequality chain, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑 → 3 ≤ 𝑋)       (𝜑 → ((3 / 2)↑5) ≤ ((2 logb 𝑋)↑5))
 
Theorem3lexlogpow5ineq3 39343 Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑 → 3 ≤ 𝑋)       (𝜑 → 7 < ((2 logb 𝑋)↑5))
 
20.25.5  Miscellaneous results for AKS formalisation
 
Theoremintlewftc 39344* Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))    &   (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))    &   (𝜑𝐷 = (ℝ D 𝐹))    &   (𝜑𝐸 = (ℝ D 𝐺))    &   (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))    &   (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))    &   (𝜑𝐷 ∈ 𝐿1)    &   (𝜑𝐸 ∈ 𝐿1)    &   (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))    &   (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))    &   ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)    &   (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))       (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
 
Theoremaks4d1p1p1 39345* Exponential law for finite products, special case. (Contributed by metakunt, 22-Jul-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ∏𝑘 ∈ (1...𝑁)(𝐴𝑐𝑘) = (𝐴𝑐Σ𝑘 ∈ (1...𝑁)𝑘))
 
Theorem5bc2eq10 39346 The value of 5 choose 2. (Contributed by metakunt, 8-Jun-2024.)
(5C2) = 10
 
Theoremfacp2 39347 The factorial of a successor's successor. (Contributed by metakunt, 19-Apr-2024.)
(𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
 
Theorem2np3bcnp1 39348 Part of induction step for 2ap1caineq 39349. (Contributed by metakunt, 8-Jun-2024.)
(𝜑𝑁 ∈ ℕ0)       (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
 
Theorem2ap1caineq 39349 Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.)
(𝜑𝑁 ∈ ℤ)    &   (𝜑 → 2 ≤ 𝑁)       (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))
 
20.25.6  Permutation results
 
Theoremmetakunt1 39350* A is an endomapping. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))       (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
 
Theoremmetakunt2 39351* A is an endomapping. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))       (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
 
Theoremmetakunt3 39352* Value of A. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐴𝑋) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
 
Theoremmetakunt4 39353* Value of A. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐴𝑋) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
 
Theoremmetakunt5 39354* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt6 39355* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt7 39356* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
 
Theoremmetakunt8 39357* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt9 39358* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt10 39359* C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 = 𝑀) → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt11 39360* C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt12 39361* C is the right inverse for A. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑 ∧ ¬ (𝑋 = 𝑀𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt13 39362* C is the right inverse for A. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt14 39363* A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))       (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ 𝐴 = 𝐶))
 
Theoremmetakunt15 39364* Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))       (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
 
Theoremmetakunt16 39365* Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))       (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
 
Theoremmetakunt17 39366 The union of three disjoint bijections is a bijection. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐺:𝐴1-1-onto𝑋)    &   (𝜑𝐻:𝐵1-1-onto𝑌)    &   (𝜑𝐼:𝐶1-1-onto𝑍)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑 → (𝐴𝐶) = ∅)    &   (𝜑 → (𝐵𝐶) = ∅)    &   (𝜑 → (𝑋𝑌) = ∅)    &   (𝜑 → (𝑋𝑍) = ∅)    &   (𝜑 → (𝑌𝑍) = ∅)    &   (𝜑𝐹 = ((𝐺𝐻) ∪ 𝐼))    &   (𝜑𝐷 = ((𝐴𝐵) ∪ 𝐶))    &   (𝜑𝑊 = ((𝑋𝑌) ∪ 𝑍))       (𝜑𝐹:𝐷1-1-onto𝑊)
 
Theoremmetakunt18 39367 Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)       (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
 
Theoremmetakunt19 39368* Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))       (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
 
Theoremmetakunt20 39369* Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))    &   (𝜑𝑋 = 𝑀)       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt21 39370* Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))    &   (𝜑 → ¬ 𝑋 = 𝑀)    &   (𝜑𝑋 < 𝐼)       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt22 39371* Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))    &   (𝜑 → ¬ 𝑋 = 𝑀)    &   (𝜑 → ¬ 𝑋 < 𝐼)       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt23 39372* B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt24 39373 Technical condition such that metakunt17 39366 holds (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)       (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
 
Theoremmetakunt25 39374* B is a permutation. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))       (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
 
Theoremmetakunt26 39375* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑𝑋 = 𝐼)       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
 
Theoremmetakunt27 39376* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑𝑋 < 𝐼)       (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
 
Theoremmetakunt28 39377* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑 → ¬ 𝑋 < 𝐼)       (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
 
Theoremmetakunt29 39378* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑𝑋 < 𝐼)    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐻 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐻))
 
Theoremmetakunt30 39379* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑 → ¬ 𝑋 < 𝐼)    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
 
Theoremmetakunt31 39380* Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)    &   𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)    &   𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
 
Theoremmetakunt32 39381* Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))    &   𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)    &   𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)    &   𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))       (𝜑 → (𝐷𝑋) = 𝑅)
 
Theoremmetakunt33 39382* Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))       (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
 
Theoremmetakunt34 39383* 𝐷 is a permutation. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))       (𝜑𝐷:(1...𝑀)–1-1-onto→(1...𝑀))
 
20.25.7  Unused lemmas scheduled for deletion
 
Theoremandiff 39384 Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024.)
(𝜑 → (𝜒𝜃))    &   (𝜓 → (𝜃𝜒))       ((𝜑𝜓) → (𝜒𝜃))
 
Theoremfac2xp3 39385 Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024.)
(𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
 
Theoremprodsplit 39386* Product split into two factors, original by Steven Nguyen. (Contributed by metakunt, 21-Apr-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)    &   (𝜑𝐾 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 𝐾))) → 𝐴 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 𝐾))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...(𝑁 + 𝐾))𝐴))
 
Theorem2xp3dxp2ge1d 39387 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
(𝜑𝑋 ∈ (-1[,)+∞))       (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
 
Theoremfactwoffsmonot 39388 A factorial with offset is monotonely increasing. (Contributed by metakunt, 20-Apr-2024.)
(((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑁 ∈ ℕ0) → (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁)))
 
20.26  Mathbox for Steven Nguyen
 
20.26.1  Utility theorems
 
Theoremioin9i8 39389 Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝜑 → (𝜓𝜒))    &   (𝜒 → ¬ 𝜃)    &   (𝜓𝜃)       (𝜑 → (𝜓𝜃))
 
Theoremjaodd 39390 Double deduction form of jaoi 854. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜏𝜃)))       (𝜑 → (𝜓 → ((𝜒𝜏) → 𝜃)))
 
Theoremsylibda 39391 A syllogism deduction. (Contributed by SN, 16-Jul-2024.)
(𝜑 → (𝜓𝜒))    &   ((𝜑𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremnsb 39392 Generalization rule for negated wff. (Contributed by Steven Nguyen, 3-May-2023.)
¬ 𝜑        ¬ [𝑥 / 𝑦]𝜑
 
Theoremsbtd 39393* A true statement is true upon substitution (deduction). A similar proof is possible for icht 43969. (Contributed by SN, 4-May-2024.)
(𝜑𝜓)       (𝜑 → [𝑡 / 𝑥]𝜓)
 
Theoremsbn1 39394 One direction of sbn 2283, using fewer axioms. Compare 19.2 1981. (Contributed by Steven Nguyen, 18-Aug-2023.)
([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)
 
Theoremsbor2 39395 One direction of sbor 2312, using fewer axioms. Compare 19.33 1885. (Contributed by Steven Nguyen, 18-Aug-2023.)
(([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))
 
Theorem19.9dev 39396* 19.9d 2201 in the case of an existential quantifier, avoiding the ax-10 2142 from nfex 2332 that would be used for the hypothesis of 19.9d 2201, at the cost of an additional DV condition on 𝑦, 𝜑. (Contributed by SN, 26-May-2024.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑦𝜓))
 
Theorem3rspcedvd 39397* Triple application of rspcedvd 3574. (Contributed by Steven Nguyen, 27-Feb-2023.)
(𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝐷)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   ((𝜑𝑦 = 𝐵) → (𝜒𝜃))    &   ((𝜑𝑧 = 𝐶) → (𝜃𝜏))    &   (𝜑𝜏)       (𝜑 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 𝜓)
 
Theoremrabeqcda 39398* When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3626. (Contributed by Steven Nguyen, 7-Jun-2023.)
((𝜑𝑥𝐴) → 𝜓)       (𝜑 → {𝑥𝐴𝜓} = 𝐴)
 
Theoremrabdif 39399* Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.)
({𝑥𝐴𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
 
Theoremsn-axrep5v 39400* A condensed form of axrep5 5160. (Contributed by SN, 21-Sep-2023.)
(∀𝑤𝑥 ∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >