| Metamath
Proof Explorer Theorem List (p. 394 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | atllat 39301 | An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
| ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | ||
| Theorem | atlpos 39302 | An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
| ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | ||
| Theorem | atl0dm 39303 | Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) | ||
| Theorem | atl0cl 39304 | An atomic lattice has a zero element. We can use this in place of op0cl 39185 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) | ||
| Theorem | atl0le 39305 | Orthoposet zero is less than or equal to any element. (ch0le 31460 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
| Theorem | atlle0 39306 | An element less than or equal to zero equals zero. (chle0 31462 analog.) (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
| Theorem | atlltn0 39307 | A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
| Theorem | isat3 39308* | The predicate "is an atom". (elat2 32359 analog.) (Contributed by NM, 27-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) | ||
| Theorem | atn0 39309 | An atom is not zero. (atne0 32364 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) | ||
| Theorem | atnle0 39310 | An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) | ||
| Theorem | atlen0 39311 | A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) | ||
| Theorem | atcmp 39312 | If two atoms are comparable, they are equal. (atsseq 32366 analog.) (Contributed by NM, 13-Oct-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) | ||
| Theorem | atncmp 39313 | Frequently-used variation of atcmp 39312. (Contributed by NM, 29-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑄 ↔ 𝑃 ≠ 𝑄)) | ||
| Theorem | atnlt 39314 | Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
| ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) | ||
| Theorem | atcvreq0 39315 | An element covered by an atom must be zero. (atcveq0 32367 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋𝐶𝑃 ↔ 𝑋 = 0 )) | ||
| Theorem | atncvrN 39316 | Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) | ||
| Theorem | atlex 39317* | Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32379 analog.) (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) | ||
| Theorem | atnle 39318 | Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 32395 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) | ||
| Theorem | atnem0 39319 | The meet of distinct atoms is zero. (atnemeq0 32396 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) | ||
| Theorem | atlatmstc 39320* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32381 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
| Theorem | atlatle 39321* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 32390 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) | ||
| Theorem | atlrelat1 39322* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32382, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | ||
| Definition | df-cvlat 39323* | Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐 ∧ 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))} | ||
| Theorem | iscvlat 39324* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | ||
| Theorem | iscvlat2N 39325* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | ||
| Theorem | cvlatl 39326 | An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
| ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | ||
| Theorem | cvllat 39327 | An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
| ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | ||
| Theorem | cvlposN 39328 | An atomic lattice with the covering property is a poset. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
| ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Poset) | ||
| Theorem | cvlexch1 39329 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
| Theorem | cvlexch2 39330 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) | ||
| Theorem | cvlexchb1 39331 | An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
| Theorem | cvlexchb2 39332 | An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) | ||
| Theorem | cvlexch3 39333 | An atomic covering lattice has the exchange property. (atexch 32400 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
| Theorem | cvlexch4N 39334 | An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
| Theorem | cvlatexchb1 39335 | A version of cvlexchb1 39331 for atoms. (Contributed by NM, 5-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄))) | ||
| Theorem | cvlatexchb2 39336 | A version of cvlexchb2 39332 for atoms. (Contributed by NM, 5-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) | ||
| Theorem | cvlatexch1 39337 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
| Theorem | cvlatexch2 39338 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) | ||
| Theorem | cvlatexch3 39339 | Atom exchange property. (Contributed by NM, 29-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → (𝑃 ≤ (𝑄 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | ||
| Theorem | cvlcvr1 39340 | The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 32374 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
| Theorem | cvlcvrp 39341 | A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32394 analog.) (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
| Theorem | cvlatcvr1 39342 | An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) | ||
| Theorem | cvlatcvr2 39343 | An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑄 ∨ 𝑃))) | ||
| Theorem | cvlsupr2 39344 | Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄. (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) | ||
| Theorem | cvlsupr3 39345 | Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 39353, (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ), with the simpler ∃𝑧 ∈ 𝐴(𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧) as shown in ishlat3N 39355. (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) | ||
| Theorem | cvlsupr4 39346 | Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 9-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | cvlsupr5 39347 | Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 9-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑃) | ||
| Theorem | cvlsupr6 39348 | Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 9-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑄) | ||
| Theorem | cvlsupr7 39349 | Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 24-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) | ||
| Theorem | cvlsupr8 39350 | Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 24-Nov-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) | ||
| Syntax | chlt 39351 | Extend class notation with Hilbert lattices. |
| class HL | ||
| Definition | df-hlat 39352* | Define the class of Hilbert lattices, which are complete, atomic lattices satisfying the superposition principle and minimum height. (Contributed by NM, 5-Nov-2012.) |
| ⊢ HL = {𝑙 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑎 ∈ (Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))))} | ||
| Theorem | ishlat1 39353* | The predicate "is a Hilbert lattice", which is: is orthomodular (𝐾 ∈ OML), complete (𝐾 ∈ CLat), atomic and satisfies the exchange (or covering) property (𝐾 ∈ CvLat), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) | ||
| Theorem | ishlat2 39354* | The predicate "is a Hilbert lattice". Here we replace 𝐾 ∈ CvLat with the weaker 𝐾 ∈ AtLat and show the exchange property explicitly. (Contributed by NM, 5-Nov-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) | ||
| Theorem | ishlat3N 39355* | The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form ∃𝑧 ∈ 𝐴(𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧). The exchange property and atomicity are provided by 𝐾 ∈ CvLat, and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 (𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) | ||
| Theorem | ishlatiN 39356* | Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.) |
| ⊢ 𝐾 ∈ OML & ⊢ 𝐾 ∈ CLat & ⊢ 𝐾 ∈ AtLat & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) & ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) ⇒ ⊢ 𝐾 ∈ HL | ||
| Theorem | hlomcmcv 39357 | A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.) |
| ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | ||
| Theorem | hloml 39358 | A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | ||
| Theorem | hlclat 39359 | A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | ||
| Theorem | hlcvl 39360 | A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | ||
| Theorem | hlatl 39361 | A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | ||
| Theorem | hlol 39362 | A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | ||
| Theorem | hlop 39363 | A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | ||
| Theorem | hllat 39364 | A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | ||
| Theorem | hllatd 39365 | Deduction form of hllat 39364. A Hilbert lattice is a lattice. (Contributed by BJ, 14-Aug-2022.) |
| ⊢ (𝜑 → 𝐾 ∈ HL) ⇒ ⊢ (𝜑 → 𝐾 ∈ Lat) | ||
| Theorem | hlomcmat 39366 | A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
| ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | ||
| Theorem | hlpos 39367 | A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | ||
| Theorem | hlatjcl 39368 | Closure of join operation. Frequently-used special case of latjcl 18484 for atoms. (Contributed by NM, 15-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
| Theorem | hlatjcom 39369 | Commutatitivity of join operation. Frequently-used special case of latjcom 18492 for atoms. (Contributed by NM, 15-Jun-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
| Theorem | hlatjidm 39370 | Idempotence of join operation. Frequently-used special case of latjcom 18492 for atoms. (Contributed by NM, 15-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) | ||
| Theorem | hlatjass 39371 | Lattice join is associative. Frequently-used special case of latjass 18528 for atoms. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) | ||
| Theorem | hlatj12 39372 | Swap 1st and 2nd members of lattice join. Frequently-used special case of latj32 18530 for atoms. (Contributed by NM, 4-Jun-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ∨ (𝑄 ∨ 𝑅)) = (𝑄 ∨ (𝑃 ∨ 𝑅))) | ||
| Theorem | hlatj32 39373 | Swap 2nd and 3rd members of lattice join. Frequently-used special case of latj32 18530 for atoms. (Contributed by NM, 21-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) | ||
| Theorem | hlatjrot 39374 | Rotate lattice join of 3 classes. Frequently-used special case of latjrot 18533 for atoms. (Contributed by NM, 2-Aug-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑅 ∨ 𝑃) ∨ 𝑄)) | ||
| Theorem | hlatj4 39375 | Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 18534 for atoms. (Contributed by NM, 9-Aug-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) | ||
| Theorem | hlatlej1 39376 | A join's first argument is less than or equal to the join. Special case of latlej1 18493 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | hlatlej2 39377 | A join's second argument is less than or equal to the join. Special case of latlej2 18494 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | glbconN 39378* | De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012.) New df-riota 7388. (Revised by SN, 3-Jan-2025.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) | ||
| Theorem | glbconNOLD 39379* | Obsolete version of glbconN 39378 as of 3-Jan-2025. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) | ||
| Theorem | glbconxN 39380* | De Morgan's law for GLB and LUB. Index-set version of glbconN 39378, where we read 𝑆 as 𝑆(𝑖). (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}) = ( ⊥ ‘(𝑈‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)}))) | ||
| Theorem | atnlej1 39381 | If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑄) | ||
| Theorem | atnlej2 39382 | If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑅) | ||
| Theorem | hlsuprexch 39383* | A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃)))) | ||
| Theorem | hlexch1 39384 | A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
| Theorem | hlexch2 39385 | A Hilbert lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) | ||
| Theorem | hlexchb1 39386 | A Hilbert lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
| Theorem | hlexchb2 39387 | A Hilbert lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) | ||
| Theorem | hlsupr 39388* | A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Theorem | hlsupr2 39389* | A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | ||
| Theorem | hlhgt4 39390* | A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | ||
| Theorem | hlhgt2 39391* | A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ( 0 < 𝑥 ∧ 𝑥 < 1 )) | ||
| Theorem | hl0lt1N 39392 | Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
| ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 0 < 1 ) | ||
| Theorem | hlexch3 39393 | A Hilbert lattice has the exchange property. (atexch 32400 analog.) (Contributed by NM, 15-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
| Theorem | hlexch4N 39394 | A Hilbert lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 15-Nov-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
| Theorem | hlatexchb1 39395 | A version of hlexchb1 39386 for atoms. (Contributed by NM, 15-Nov-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄))) | ||
| Theorem | hlatexchb2 39396 | A version of hlexchb2 39387 for atoms. (Contributed by NM, 7-Feb-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) | ||
| Theorem | hlatexch1 39397 | Atom exchange property. (Contributed by NM, 7-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
| Theorem | hlatexch2 39398 | Atom exchange property. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) | ||
| Theorem | hlatmstcOLDN 39399* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32381 analog.) (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
| Theorem | hlatle 39400* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 32390 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |