| Step | Hyp | Ref
| Expression |
| 1 | | elex 3485 |
. 2
⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) |
| 2 | | pautset.m |
. . 3
⊢ 𝑀 = (PAut‘𝐾) |
| 3 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾)) |
| 4 | | pautset.s |
. . . . . . . . 9
⊢ 𝑆 = (PSubSp‘𝐾) |
| 5 | 3, 4 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆) |
| 6 | 5 | f1oeq2d 6819 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→(PSubSp‘𝑘))) |
| 7 | | f1oeq3 6813 |
. . . . . . . 8
⊢
((PSubSp‘𝑘) =
𝑆 → (𝑓:𝑆–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→𝑆)) |
| 8 | 5, 7 | syl 17 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓:𝑆–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→𝑆)) |
| 9 | 6, 8 | bitrd 279 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→𝑆)) |
| 10 | 5 | raleqdv 3309 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))) |
| 11 | 5, 10 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))) |
| 12 | 9, 11 | anbi12d 632 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))))) |
| 13 | 12 | abbidv 2802 |
. . . 4
⊢ (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
| 14 | | df-pautN 40015 |
. . . 4
⊢ PAut =
(𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
| 15 | 4 | fvexi 6895 |
. . . . . . . 8
⊢ 𝑆 ∈ V |
| 16 | 15, 15 | mapval 8857 |
. . . . . . 7
⊢ (𝑆 ↑m 𝑆) = {𝑓 ∣ 𝑓:𝑆⟶𝑆} |
| 17 | | ovex 7443 |
. . . . . . 7
⊢ (𝑆 ↑m 𝑆) ∈ V |
| 18 | 16, 17 | eqeltrri 2832 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:𝑆⟶𝑆} ∈ V |
| 19 | | f1of 6823 |
. . . . . . 7
⊢ (𝑓:𝑆–1-1-onto→𝑆 → 𝑓:𝑆⟶𝑆) |
| 20 | 19 | ss2abi 4047 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:𝑆–1-1-onto→𝑆} ⊆ {𝑓 ∣ 𝑓:𝑆⟶𝑆} |
| 21 | 18, 20 | ssexi 5297 |
. . . . 5
⊢ {𝑓 ∣ 𝑓:𝑆–1-1-onto→𝑆} ∈ V |
| 22 | | simpl 482 |
. . . . . 6
⊢ ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) → 𝑓:𝑆–1-1-onto→𝑆) |
| 23 | 22 | ss2abi 4047 |
. . . . 5
⊢ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:𝑆–1-1-onto→𝑆} |
| 24 | 21, 23 | ssexi 5297 |
. . . 4
⊢ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ∈ V |
| 25 | 13, 14, 24 | fvmpt 6991 |
. . 3
⊢ (𝐾 ∈ V →
(PAut‘𝐾) = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
| 26 | 2, 25 | eqtrid 2783 |
. 2
⊢ (𝐾 ∈ V → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
| 27 | 1, 26 | syl 17 |
1
⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |