Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pautsetN Structured version   Visualization version   GIF version

Theorem pautsetN 40099
Description: The set of projective automorphisms. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pautset.s 𝑆 = (PSubSp‘𝐾)
pautset.m 𝑀 = (PAut‘𝐾)
Assertion
Ref Expression
pautsetN (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
Distinct variable groups:   𝑥,𝑓,𝑦   𝑓,𝐾,𝑥   𝑆,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐾(𝑦)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem pautsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐾𝐵𝐾 ∈ V)
2 pautset.m . . 3 𝑀 = (PAut‘𝐾)
3 fveq2 6861 . . . . . . . . 9 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
4 pautset.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4eqtr4di 2783 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
65f1oeq2d 6799 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto→(PSubSp‘𝑘)))
7 f1oeq3 6793 . . . . . . . 8 ((PSubSp‘𝑘) = 𝑆 → (𝑓:𝑆1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto𝑆))
85, 7syl 17 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:𝑆1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto𝑆))
96, 8bitrd 279 . . . . . 6 (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto𝑆))
105raleqdv 3301 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))))
115, 10raleqbidv 3321 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))))
129, 11anbi12d 632 . . . . 5 (𝑘 = 𝐾 → ((𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) ↔ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))))
1312abbidv 2796 . . . 4 (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
14 df-pautN 39992 . . . 4 PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
154fvexi 6875 . . . . . . . 8 𝑆 ∈ V
1615, 15mapval 8814 . . . . . . 7 (𝑆m 𝑆) = {𝑓𝑓:𝑆𝑆}
17 ovex 7423 . . . . . . 7 (𝑆m 𝑆) ∈ V
1816, 17eqeltrri 2826 . . . . . 6 {𝑓𝑓:𝑆𝑆} ∈ V
19 f1of 6803 . . . . . . 7 (𝑓:𝑆1-1-onto𝑆𝑓:𝑆𝑆)
2019ss2abi 4033 . . . . . 6 {𝑓𝑓:𝑆1-1-onto𝑆} ⊆ {𝑓𝑓:𝑆𝑆}
2118, 20ssexi 5280 . . . . 5 {𝑓𝑓:𝑆1-1-onto𝑆} ∈ V
22 simpl 482 . . . . . 6 ((𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) → 𝑓:𝑆1-1-onto𝑆)
2322ss2abi 4033 . . . . 5 {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ⊆ {𝑓𝑓:𝑆1-1-onto𝑆}
2421, 23ssexi 5280 . . . 4 {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ∈ V
2513, 14, 24fvmpt 6971 . . 3 (𝐾 ∈ V → (PAut‘𝐾) = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
262, 25eqtrid 2777 . 2 (𝐾 ∈ V → 𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
271, 26syl 17 1 (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  wss 3917  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  m cmap 8802  PSubSpcpsubsp 39497  PAutcpautN 39988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-pautN 39992
This theorem is referenced by:  ispautN  40100
  Copyright terms: Public domain W3C validator