Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pautsetN Structured version   Visualization version   GIF version

Theorem pautsetN 40055
Description: The set of projective automorphisms. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pautset.s 𝑆 = (PSubSp‘𝐾)
pautset.m 𝑀 = (PAut‘𝐾)
Assertion
Ref Expression
pautsetN (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
Distinct variable groups:   𝑥,𝑓,𝑦   𝑓,𝐾,𝑥   𝑆,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐾(𝑦)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem pautsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝐵𝐾 ∈ V)
2 pautset.m . . 3 𝑀 = (PAut‘𝐾)
3 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
4 pautset.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4eqtr4di 2798 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
65f1oeq2d 6858 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto→(PSubSp‘𝑘)))
7 f1oeq3 6852 . . . . . . . 8 ((PSubSp‘𝑘) = 𝑆 → (𝑓:𝑆1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto𝑆))
85, 7syl 17 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:𝑆1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto𝑆))
96, 8bitrd 279 . . . . . 6 (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆1-1-onto𝑆))
105raleqdv 3334 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))))
115, 10raleqbidv 3354 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))))
129, 11anbi12d 631 . . . . 5 (𝑘 = 𝐾 → ((𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) ↔ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))))
1312abbidv 2811 . . . 4 (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
14 df-pautN 39948 . . . 4 PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
154fvexi 6934 . . . . . . . 8 𝑆 ∈ V
1615, 15mapval 8896 . . . . . . 7 (𝑆m 𝑆) = {𝑓𝑓:𝑆𝑆}
17 ovex 7481 . . . . . . 7 (𝑆m 𝑆) ∈ V
1816, 17eqeltrri 2841 . . . . . 6 {𝑓𝑓:𝑆𝑆} ∈ V
19 f1of 6862 . . . . . . 7 (𝑓:𝑆1-1-onto𝑆𝑓:𝑆𝑆)
2019ss2abi 4090 . . . . . 6 {𝑓𝑓:𝑆1-1-onto𝑆} ⊆ {𝑓𝑓:𝑆𝑆}
2118, 20ssexi 5340 . . . . 5 {𝑓𝑓:𝑆1-1-onto𝑆} ∈ V
22 simpl 482 . . . . . 6 ((𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) → 𝑓:𝑆1-1-onto𝑆)
2322ss2abi 4090 . . . . 5 {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ⊆ {𝑓𝑓:𝑆1-1-onto𝑆}
2421, 23ssexi 5340 . . . 4 {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ∈ V
2513, 14, 24fvmpt 7029 . . 3 (𝐾 ∈ V → (PAut‘𝐾) = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
262, 25eqtrid 2792 . 2 (𝐾 ∈ V → 𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
271, 26syl 17 1 (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  wss 3976  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  PSubSpcpsubsp 39453  PAutcpautN 39944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-pautN 39948
This theorem is referenced by:  ispautN  40056
  Copyright terms: Public domain W3C validator