| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3501 | . 2
⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | 
| 2 |  | pautset.m | . . 3
⊢ 𝑀 = (PAut‘𝐾) | 
| 3 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾)) | 
| 4 |  | pautset.s | . . . . . . . . 9
⊢ 𝑆 = (PSubSp‘𝐾) | 
| 5 | 3, 4 | eqtr4di 2795 | . . . . . . . 8
⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆) | 
| 6 | 5 | f1oeq2d 6844 | . . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→(PSubSp‘𝑘))) | 
| 7 |  | f1oeq3 6838 | . . . . . . . 8
⊢
((PSubSp‘𝑘) =
𝑆 → (𝑓:𝑆–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→𝑆)) | 
| 8 | 5, 7 | syl 17 | . . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓:𝑆–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→𝑆)) | 
| 9 | 6, 8 | bitrd 279 | . . . . . 6
⊢ (𝑘 = 𝐾 → (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ↔ 𝑓:𝑆–1-1-onto→𝑆)) | 
| 10 | 5 | raleqdv 3326 | . . . . . . 7
⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))) | 
| 11 | 5, 10 | raleqbidv 3346 | . . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))) | 
| 12 | 9, 11 | anbi12d 632 | . . . . 5
⊢ (𝑘 = 𝐾 → ((𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))))) | 
| 13 | 12 | abbidv 2808 | . . . 4
⊢ (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) | 
| 14 |  | df-pautN 39993 | . . . 4
⊢ PAut =
(𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) | 
| 15 | 4 | fvexi 6920 | . . . . . . . 8
⊢ 𝑆 ∈ V | 
| 16 | 15, 15 | mapval 8878 | . . . . . . 7
⊢ (𝑆 ↑m 𝑆) = {𝑓 ∣ 𝑓:𝑆⟶𝑆} | 
| 17 |  | ovex 7464 | . . . . . . 7
⊢ (𝑆 ↑m 𝑆) ∈ V | 
| 18 | 16, 17 | eqeltrri 2838 | . . . . . 6
⊢ {𝑓 ∣ 𝑓:𝑆⟶𝑆} ∈ V | 
| 19 |  | f1of 6848 | . . . . . . 7
⊢ (𝑓:𝑆–1-1-onto→𝑆 → 𝑓:𝑆⟶𝑆) | 
| 20 | 19 | ss2abi 4067 | . . . . . 6
⊢ {𝑓 ∣ 𝑓:𝑆–1-1-onto→𝑆} ⊆ {𝑓 ∣ 𝑓:𝑆⟶𝑆} | 
| 21 | 18, 20 | ssexi 5322 | . . . . 5
⊢ {𝑓 ∣ 𝑓:𝑆–1-1-onto→𝑆} ∈ V | 
| 22 |  | simpl 482 | . . . . . 6
⊢ ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) → 𝑓:𝑆–1-1-onto→𝑆) | 
| 23 | 22 | ss2abi 4067 | . . . . 5
⊢ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:𝑆–1-1-onto→𝑆} | 
| 24 | 21, 23 | ssexi 5322 | . . . 4
⊢ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ∈ V | 
| 25 | 13, 14, 24 | fvmpt 7016 | . . 3
⊢ (𝐾 ∈ V →
(PAut‘𝐾) = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) | 
| 26 | 2, 25 | eqtrid 2789 | . 2
⊢ (𝐾 ∈ V → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) | 
| 27 | 1, 26 | syl 17 | 1
⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |