Step | Hyp | Ref
| Expression |
1 | | isphtpy.2 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
2 | | cntop2 22392 |
. . . . 5
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
3 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) |
4 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (II Htpy 𝑗) = (II Htpy 𝐽)) |
5 | 4 | oveqd 7292 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (𝑓(II Htpy 𝑗)𝑔) = (𝑓(II Htpy 𝐽)𝑔)) |
6 | 5 | rabeqdv 3419 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → {ℎ ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))} = {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))}) |
7 | 3, 3, 6 | mpoeq123dv 7350 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ {ℎ ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))}) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
8 | | df-phtpy 24134 |
. . . . . 6
⊢ PHtpy =
(𝑗 ∈ Top ↦
(𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ {ℎ ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
9 | | ovex 7308 |
. . . . . . 7
⊢ (II Cn
𝐽) ∈
V |
10 | 9, 9 | mpoex 7920 |
. . . . . 6
⊢ (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))}) ∈ V |
11 | 7, 8, 10 | fvmpt 6875 |
. . . . 5
⊢ (𝐽 ∈ Top →
(PHtpy‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
12 | 1, 2, 11 | 3syl 18 |
. . . 4
⊢ (𝜑 → (PHtpy‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
13 | | oveq12 7284 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓(II Htpy 𝐽)𝑔) = (𝐹(II Htpy 𝐽)𝐺)) |
14 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
15 | 14 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘0) = (𝐹‘0)) |
16 | 15 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((0ℎ𝑠) = (𝑓‘0) ↔ (0ℎ𝑠) = (𝐹‘0))) |
17 | 14 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘1) = (𝐹‘1)) |
18 | 17 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((1ℎ𝑠) = (𝑓‘1) ↔ (1ℎ𝑠) = (𝐹‘1))) |
19 | 16, 18 | anbi12d 631 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1)) ↔ ((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1)))) |
20 | 19 | ralbidv 3112 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1)) ↔ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1)))) |
21 | 13, 20 | rabeqbidv 3420 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))} = {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))}) |
22 | 21 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → {ℎ ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))} = {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))}) |
23 | | isphtpy.3 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
24 | | ovex 7308 |
. . . . . 6
⊢ (𝐹(II Htpy 𝐽)𝐺) ∈ V |
25 | 24 | rabex 5256 |
. . . . 5
⊢ {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))} ∈ V |
26 | 25 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))} ∈ V) |
27 | 12, 22, 1, 23, 26 | ovmpod 7425 |
. . 3
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) = {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))}) |
28 | 27 | eleq2d 2824 |
. 2
⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ 𝐻 ∈ {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))})) |
29 | | oveq 7281 |
. . . . . 6
⊢ (ℎ = 𝐻 → (0ℎ𝑠) = (0𝐻𝑠)) |
30 | 29 | eqeq1d 2740 |
. . . . 5
⊢ (ℎ = 𝐻 → ((0ℎ𝑠) = (𝐹‘0) ↔ (0𝐻𝑠) = (𝐹‘0))) |
31 | | oveq 7281 |
. . . . . 6
⊢ (ℎ = 𝐻 → (1ℎ𝑠) = (1𝐻𝑠)) |
32 | 31 | eqeq1d 2740 |
. . . . 5
⊢ (ℎ = 𝐻 → ((1ℎ𝑠) = (𝐹‘1) ↔ (1𝐻𝑠) = (𝐹‘1))) |
33 | 30, 32 | anbi12d 631 |
. . . 4
⊢ (ℎ = 𝐻 → (((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1)) ↔ ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
34 | 33 | ralbidv 3112 |
. . 3
⊢ (ℎ = 𝐻 → (∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1)) ↔ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
35 | 34 | elrab 3624 |
. 2
⊢ (𝐻 ∈ {ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))} ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
36 | 28, 35 | bitrdi 287 |
1
⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |