MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpy Structured version   Visualization version   GIF version

Theorem isphtpy 24497
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
isphtpy (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠

Proof of Theorem isphtpy
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
2 cntop2 22745 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
3 oveq2 7417 . . . . . . 7 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
4 oveq2 7417 . . . . . . . . 9 (𝑗 = 𝐽 → (II Htpy 𝑗) = (II Htpy 𝐽))
54oveqd 7426 . . . . . . . 8 (𝑗 = 𝐽 → (𝑓(II Htpy 𝑗)𝑔) = (𝑓(II Htpy 𝐽)𝑔))
65rabeqdv 3448 . . . . . . 7 (𝑗 = 𝐽 → { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))})
73, 3, 6mpoeq123dv 7484 . . . . . 6 (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
8 df-phtpy 24487 . . . . . 6 PHtpy = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
9 ovex 7442 . . . . . . 7 (II Cn 𝐽) ∈ V
109, 9mpoex 8066 . . . . . 6 (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}) ∈ V
117, 8, 10fvmpt 6999 . . . . 5 (𝐽 ∈ Top → (PHtpy‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
121, 2, 113syl 18 . . . 4 (𝜑 → (PHtpy‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
13 oveq12 7418 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(II Htpy 𝐽)𝑔) = (𝐹(II Htpy 𝐽)𝐺))
14 simpl 484 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
1514fveq1d 6894 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓‘0) = (𝐹‘0))
1615eqeq2d 2744 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ((0𝑠) = (𝑓‘0) ↔ (0𝑠) = (𝐹‘0)))
1714fveq1d 6894 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓‘1) = (𝐹‘1))
1817eqeq2d 2744 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ((1𝑠) = (𝑓‘1) ↔ (1𝑠) = (𝐹‘1)))
1916, 18anbi12d 632 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1)) ↔ ((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))))
2019ralbidv 3178 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1)) ↔ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))))
2113, 20rabeqbidv 3450 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))})
2221adantl 483 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))})
23 isphtpy.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
24 ovex 7442 . . . . . 6 (𝐹(II Htpy 𝐽)𝐺) ∈ V
2524rabex 5333 . . . . 5 { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))} ∈ V
2625a1i 11 . . . 4 (𝜑 → { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))} ∈ V)
2712, 22, 1, 23, 26ovmpod 7560 . . 3 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) = { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))})
2827eleq2d 2820 . 2 (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ 𝐻 ∈ { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))}))
29 oveq 7415 . . . . . 6 ( = 𝐻 → (0𝑠) = (0𝐻𝑠))
3029eqeq1d 2735 . . . . 5 ( = 𝐻 → ((0𝑠) = (𝐹‘0) ↔ (0𝐻𝑠) = (𝐹‘0)))
31 oveq 7415 . . . . . 6 ( = 𝐻 → (1𝑠) = (1𝐻𝑠))
3231eqeq1d 2735 . . . . 5 ( = 𝐻 → ((1𝑠) = (𝐹‘1) ↔ (1𝐻𝑠) = (𝐹‘1)))
3330, 32anbi12d 632 . . . 4 ( = 𝐻 → (((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)) ↔ ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
3433ralbidv 3178 . . 3 ( = 𝐻 → (∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)) ↔ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
3534elrab 3684 . 2 (𝐻 ∈ { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))} ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
3628, 35bitrdi 287 1 (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  {crab 3433  Vcvv 3475  cfv 6544  (class class class)co 7409  cmpo 7411  0cc0 11110  1c1 11111  [,]cicc 13327  Topctop 22395   Cn ccn 22728  IIcii 24391   Htpy chtpy 24483  PHtpycphtpy 24484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-top 22396  df-topon 22413  df-cn 22731  df-phtpy 24487
This theorem is referenced by:  phtpyhtpy  24498  phtpyi  24500  isphtpyd  24502
  Copyright terms: Public domain W3C validator