| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pid | Structured version Visualization version GIF version | ||
| Description: A principal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-pid | ⊢ PID = (IDomn ∩ LPIR) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpid 21253 | . 2 class PID | |
| 2 | cidom 20609 | . . 3 class IDomn | |
| 3 | clpir 21238 | . . 3 class LPIR | |
| 4 | 2, 3 | cin 3916 | . 2 class (IDomn ∩ LPIR) |
| 5 | 1, 4 | wceq 1540 | 1 wff PID = (IDomn ∩ LPIR) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ply1pid 26095 mxidlirred 33450 rprmirredb 33510 pidufd 33521 zringpid 33530 |
| Copyright terms: Public domain | W3C validator |