Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-pid | Structured version Visualization version GIF version |
Description: A principal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
df-pid | ⊢ PID = (IDomn ∩ LPIR) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpid 20466 | . 2 class PID | |
2 | cidom 20465 | . . 3 class IDomn | |
3 | clpir 20426 | . . 3 class LPIR | |
4 | 2, 3 | cin 3882 | . 2 class (IDomn ∩ LPIR) |
5 | 1, 4 | wceq 1539 | 1 wff PID = (IDomn ∩ LPIR) |
Colors of variables: wff setvar class |
This definition is referenced by: ply1pid 25249 |
Copyright terms: Public domain | W3C validator |