|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-pid | Structured version Visualization version GIF version | ||
| Description: A principal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| df-pid | ⊢ PID = (IDomn ∩ LPIR) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cpid 21346 | . 2 class PID | |
| 2 | cidom 20693 | . . 3 class IDomn | |
| 3 | clpir 21331 | . . 3 class LPIR | |
| 4 | 2, 3 | cin 3950 | . 2 class (IDomn ∩ LPIR) | 
| 5 | 1, 4 | wceq 1540 | 1 wff PID = (IDomn ∩ LPIR) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: ply1pid 26222 mxidlirred 33500 rprmirredb 33560 pidufd 33571 zringpid 33580 | 
| Copyright terms: Public domain | W3C validator |