Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirred Structured version   Visualization version   GIF version

Theorem mxidlirred 33479
Description: In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirred.b 𝐵 = (Base‘𝑅)
mxidlirred.k 𝐾 = (RSpan‘𝑅)
mxidlirred.0 0 = (0g𝑅)
mxidlirred.m 𝑀 = (𝐾‘{𝑋})
mxidlirred.r (𝜑𝑅 ∈ PID)
mxidlirred.x (𝜑𝑋𝐵)
mxidlirred.y (𝜑𝑋0 )
mxidlirred.1 (𝜑𝑀 ∈ (LIdeal‘𝑅))
Assertion
Ref Expression
mxidlirred (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅)))

Proof of Theorem mxidlirred
Dummy variables 𝑡 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirred.b . . 3 𝐵 = (Base‘𝑅)
2 mxidlirred.k . . 3 𝐾 = (RSpan‘𝑅)
3 mxidlirred.0 . . 3 0 = (0g𝑅)
4 mxidlirred.m . . 3 𝑀 = (𝐾‘{𝑋})
5 mxidlirred.r . . . . . 6 (𝜑𝑅 ∈ PID)
6 df-pid 21364 . . . . . 6 PID = (IDomn ∩ LPIR)
75, 6eleqtrdi 2848 . . . . 5 (𝜑𝑅 ∈ (IDomn ∩ LPIR))
87elin1d 4213 . . . 4 (𝜑𝑅 ∈ IDomn)
98adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ IDomn)
10 mxidlirred.x . . . 4 (𝜑𝑋𝐵)
1110adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋𝐵)
12 mxidlirred.y . . . 4 (𝜑𝑋0 )
1312adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋0 )
14 simpr 484 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
151, 2, 3, 4, 9, 11, 13, 14mxidlirredi 33478 . 2 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋 ∈ (Irred‘𝑅))
16 eqid 2734 . . . . . . . . . . 11 (∥r𝑅) = (∥r𝑅)
17 simplr 769 . . . . . . . . . . . 12 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑥𝐵)
1817ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑥𝐵)
1910ad8antr 740 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋𝐵)
20 eqid 2734 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
21 eqid 2734 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
228idomringd 20744 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
2322ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . . 12 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑅 ∈ Ring)
2524ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
26 simplr 769 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑡𝐵)
27 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋 = (𝑡(.r𝑅)𝑥))
28 simp-8r 792 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋 ∈ (Irred‘𝑅))
2927, 28eqeltrrd 2839 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡(.r𝑅)𝑥) ∈ (Irred‘𝑅))
30 eqid 2734 . . . . . . . . . . . . . 14 (Irred‘𝑅) = (Irred‘𝑅)
3130, 1, 20, 21irredmul 20445 . . . . . . . . . . . . 13 ((𝑡𝐵𝑥𝐵 ∧ (𝑡(.r𝑅)𝑥) ∈ (Irred‘𝑅)) → (𝑡 ∈ (Unit‘𝑅) ∨ 𝑥 ∈ (Unit‘𝑅)))
3226, 18, 29, 31syl3anc 1370 . . . . . . . . . . . 12 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡 ∈ (Unit‘𝑅) ∨ 𝑥 ∈ (Unit‘𝑅)))
33 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑘 = (𝐾‘{𝑥}))
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘 = (𝐾‘{𝑥}))
35 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
36 annim 403 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀𝑘 ∧ ¬ (𝑘 = 𝑀𝑘 = 𝐵)) ↔ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
3735, 36sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (𝑀𝑘 ∧ ¬ (𝑘 = 𝑀𝑘 = 𝐵)))
3837simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ (𝑘 = 𝑀𝑘 = 𝐵))
39 ioran 985 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑘 = 𝑀𝑘 = 𝐵) ↔ (¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵))
4038, 39sylib 218 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵))
4140simprd 495 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ 𝑘 = 𝐵)
4241neqned 2944 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘𝐵)
4342ad4antr 732 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘𝐵)
4434, 43eqnetrrd 3006 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑥}) ≠ 𝐵)
4544neneqd 2942 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ (𝐾‘{𝑥}) = 𝐵)
46 eqid 2734 . . . . . . . . . . . . . 14 (𝐾‘{𝑥}) = (𝐾‘{𝑥})
478ad8antr 740 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑅 ∈ IDomn)
4820, 2, 46, 1, 18, 47unitpidl1 33431 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ((𝐾‘{𝑥}) = 𝐵𝑥 ∈ (Unit‘𝑅)))
4945, 48mtbid 324 . . . . . . . . . . . 12 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ 𝑥 ∈ (Unit‘𝑅))
5032, 49olcnd 877 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑡 ∈ (Unit‘𝑅))
5127eqcomd 2740 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡(.r𝑅)𝑥) = 𝑋)
521, 2, 16, 18, 19, 20, 21, 25, 50, 51dvdsruassoi 33391 . . . . . . . . . 10 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑥(∥r𝑅)𝑋𝑋(∥r𝑅)𝑥))
531, 2, 16, 18, 19, 25rspsnasso 33395 . . . . . . . . . 10 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ((𝑥(∥r𝑅)𝑋𝑋(∥r𝑅)𝑥) ↔ (𝐾‘{𝑋}) = (𝐾‘{𝑥})))
5452, 53mpbid 232 . . . . . . . . 9 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑋}) = (𝐾‘{𝑥}))
5554, 34eqtr4d 2777 . . . . . . . 8 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑋}) = 𝑘)
564, 55eqtr2id 2787 . . . . . . 7 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘 = 𝑀)
5740simpld 494 . . . . . . . 8 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ 𝑘 = 𝑀)
5857ad4antr 732 . . . . . . 7 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ 𝑘 = 𝑀)
5956, 58pm2.21dd 195 . . . . . 6 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6037simpld 494 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑀𝑘)
6160ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑀𝑘)
6210snssd 4813 . . . . . . . . . . . . 13 (𝜑 → {𝑋} ⊆ 𝐵)
632, 1rspssid 21263 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋}))
6422, 62, 63syl2anc 584 . . . . . . . . . . . 12 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
6564, 4sseqtrrdi 4046 . . . . . . . . . . 11 (𝜑 → {𝑋} ⊆ 𝑀)
66 snssg 4787 . . . . . . . . . . . 12 (𝑋𝐵 → (𝑋𝑀 ↔ {𝑋} ⊆ 𝑀))
6766biimpar 477 . . . . . . . . . . 11 ((𝑋𝐵 ∧ {𝑋} ⊆ 𝑀) → 𝑋𝑀)
6810, 65, 67syl2anc 584 . . . . . . . . . 10 (𝜑𝑋𝑀)
6968ad6antr 736 . . . . . . . . 9 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋𝑀)
7061, 69sseldd 3995 . . . . . . . 8 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋𝑘)
7170, 33eleqtrd 2840 . . . . . . 7 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋 ∈ (𝐾‘{𝑥}))
721, 21, 2elrspsn 21267 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑋 ∈ (𝐾‘{𝑥}) ↔ ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥)))
7372biimpa 476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋 ∈ (𝐾‘{𝑥})) → ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥))
7424, 17, 71, 73syl21anc 838 . . . . . 6 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥))
7559, 74r19.29a 3159 . . . . 5 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑀 ∈ (MaxIdeal‘𝑅))
76 simplr 769 . . . . . . 7 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘 ∈ (LIdeal‘𝑅))
777elin2d 4214 . . . . . . . . 9 (𝜑𝑅 ∈ LPIR)
78 eqid 2734 . . . . . . . . . . 11 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
79 eqid 2734 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8078, 79islpir 21355 . . . . . . . . . 10 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
8180simprbi 496 . . . . . . . . 9 (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8277, 81syl 17 . . . . . . . 8 (𝜑 → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8382ad4antr 732 . . . . . . 7 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8476, 83eleqtrd 2840 . . . . . 6 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘 ∈ (LPIdeal‘𝑅))
8578, 2, 1islpidl 21352 . . . . . . 7 (𝑅 ∈ Ring → (𝑘 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥})))
8685biimpa 476 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥}))
8723, 84, 86syl2anc 584 . . . . 5 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥}))
8875, 87r19.29a 3159 . . . 4 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑀 ∈ (MaxIdeal‘𝑅))
89 mxidlirred.1 . . . . . . . 8 (𝜑𝑀 ∈ (LIdeal‘𝑅))
9089ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
9130, 20irrednu 20441 . . . . . . . . . 10 (𝑋 ∈ (Irred‘𝑅) → ¬ 𝑋 ∈ (Unit‘𝑅))
9291adantl 481 . . . . . . . . 9 ((𝜑𝑋 ∈ (Irred‘𝑅)) → ¬ 𝑋 ∈ (Unit‘𝑅))
9320, 2, 4, 1, 10, 8unitpidl1 33431 . . . . . . . . . . 11 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
9493adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ∈ (Irred‘𝑅)) → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
9594necon3abid 2974 . . . . . . . . 9 ((𝜑𝑋 ∈ (Irred‘𝑅)) → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
9692, 95mpbird 257 . . . . . . . 8 ((𝜑𝑋 ∈ (Irred‘𝑅)) → 𝑀𝐵)
9796adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
9890, 97jca 511 . . . . . 6 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵))
991ismxidl 33469 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
10022, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
101 df-3an 1088 . . . . . . . . . 10 ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ↔ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
102100, 101bitrdi 287 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
103102notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑀 ∈ (MaxIdeal‘𝑅) ↔ ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
104103biimpa 476 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
105104adantlr 715 . . . . . 6 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
10698, 105mpnanrd 409 . . . . 5 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
107 rexnal 3097 . . . . 5 (∃𝑘 ∈ (LIdeal‘𝑅) ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)) ↔ ¬ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
108106, 107sylibr 234 . . . 4 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∃𝑘 ∈ (LIdeal‘𝑅) ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
10988, 108r19.29a 3159 . . 3 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
110109pm2.18da 800 . 2 ((𝜑𝑋 ∈ (Irred‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
11115, 110impbida 801 1 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cin 3961  wss 3962  {csn 4630   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  .rcmulr 17298  0gc0g 17485  Ringcrg 20250  rcdsr 20370  Unitcui 20371  Irredcir 20372  IDomncidom 20709  LIdealclidl 21233  RSpancrsp 21234  LPIdealclpidl 21347  LPIRclpir 21348  PIDcpid 21363  MaxIdealcmxidl 33466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-irred 20375  df-invr 20404  df-nzr 20529  df-subrg 20586  df-domn 20711  df-idom 20712  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-lpidl 21349  df-lpir 21350  df-pid 21364  df-mxidl 33467
This theorem is referenced by:  rprmirredb  33539  algextdeglem4  33725
  Copyright terms: Public domain W3C validator