Step | Hyp | Ref
| Expression |
1 | | mxidlirred.b |
. . 3
β’ π΅ = (Baseβπ
) |
2 | | mxidlirred.k |
. . 3
β’ πΎ = (RSpanβπ
) |
3 | | mxidlirred.0 |
. . 3
β’ 0 =
(0gβπ
) |
4 | | mxidlirred.m |
. . 3
β’ π = (πΎβ{π}) |
5 | | mxidlirred.r |
. . . . . 6
β’ (π β π
β PID) |
6 | | df-pid 20901 |
. . . . . 6
β’ PID =
(IDomn β© LPIR) |
7 | 5, 6 | eleqtrdi 2843 |
. . . . 5
β’ (π β π
β (IDomn β© LPIR)) |
8 | 7 | elin1d 4198 |
. . . 4
β’ (π β π
β IDomn) |
9 | 8 | adantr 481 |
. . 3
β’ ((π β§ π β (MaxIdealβπ
)) β π
β IDomn) |
10 | | mxidlirred.x |
. . . 4
β’ (π β π β π΅) |
11 | 10 | adantr 481 |
. . 3
β’ ((π β§ π β (MaxIdealβπ
)) β π β π΅) |
12 | | mxidlirred.y |
. . . 4
β’ (π β π β 0 ) |
13 | 12 | adantr 481 |
. . 3
β’ ((π β§ π β (MaxIdealβπ
)) β π β 0 ) |
14 | | simpr 485 |
. . 3
β’ ((π β§ π β (MaxIdealβπ
)) β π β (MaxIdealβπ
)) |
15 | 1, 2, 3, 4, 9, 11,
13, 14 | mxidlirredi 32582 |
. 2
β’ ((π β§ π β (MaxIdealβπ
)) β π β (Irredβπ
)) |
16 | | eqid 2732 |
. . . . . . . . . . 11
β’
(β₯rβπ
) = (β₯rβπ
) |
17 | | simplr 767 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π₯ β π΅) |
18 | 17 | ad2antrr 724 |
. . . . . . . . . . 11
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π₯ β π΅) |
19 | 10 | ad8antr 738 |
. . . . . . . . . . 11
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π β π΅) |
20 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Unitβπ
) =
(Unitβπ
) |
21 | | eqid 2732 |
. . . . . . . . . . 11
β’
(.rβπ
) = (.rβπ
) |
22 | 8 | idomringd 32370 |
. . . . . . . . . . . . . 14
β’ (π β π
β Ring) |
23 | 22 | ad4antr 730 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β π
β Ring) |
24 | 23 | ad2antrr 724 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π
β Ring) |
25 | 24 | ad2antrr 724 |
. . . . . . . . . . 11
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π
β Ring) |
26 | | simplr 767 |
. . . . . . . . . . . . 13
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π‘ β π΅) |
27 | | simpr 485 |
. . . . . . . . . . . . . 14
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π = (π‘(.rβπ
)π₯)) |
28 | | simp-8r 790 |
. . . . . . . . . . . . . 14
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π β (Irredβπ
)) |
29 | 27, 28 | eqeltrrd 2834 |
. . . . . . . . . . . . 13
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (π‘(.rβπ
)π₯) β (Irredβπ
)) |
30 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Irredβπ
) =
(Irredβπ
) |
31 | 30, 1, 20, 21 | irredmul 20242 |
. . . . . . . . . . . . 13
β’ ((π‘ β π΅ β§ π₯ β π΅ β§ (π‘(.rβπ
)π₯) β (Irredβπ
)) β (π‘ β (Unitβπ
) β¨ π₯ β (Unitβπ
))) |
32 | 26, 18, 29, 31 | syl3anc 1371 |
. . . . . . . . . . . 12
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (π‘ β (Unitβπ
) β¨ π₯ β (Unitβπ
))) |
33 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π = (πΎβ{π₯})) |
34 | 33 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π = (πΎβ{π₯})) |
35 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β Β¬ (π β π β (π = π β¨ π = π΅))) |
36 | | annim 404 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β π β§ Β¬ (π = π β¨ π = π΅)) β Β¬ (π β π β (π = π β¨ π = π΅))) |
37 | 35, 36 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β (π β π β§ Β¬ (π = π β¨ π = π΅))) |
38 | 37 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β Β¬ (π = π β¨ π = π΅)) |
39 | | ioran 982 |
. . . . . . . . . . . . . . . . . . 19
β’ (Β¬
(π = π β¨ π = π΅) β (Β¬ π = π β§ Β¬ π = π΅)) |
40 | 38, 39 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β (Β¬ π = π β§ Β¬ π = π΅)) |
41 | 40 | simprd 496 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β Β¬ π = π΅) |
42 | 41 | neqned 2947 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β π β π΅) |
43 | 42 | ad4antr 730 |
. . . . . . . . . . . . . . 15
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π β π΅) |
44 | 34, 43 | eqnetrrd 3009 |
. . . . . . . . . . . . . 14
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (πΎβ{π₯}) β π΅) |
45 | 44 | neneqd 2945 |
. . . . . . . . . . . . 13
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β Β¬ (πΎβ{π₯}) = π΅) |
46 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ (πΎβ{π₯}) = (πΎβ{π₯}) |
47 | 8 | ad8antr 738 |
. . . . . . . . . . . . . 14
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π
β IDomn) |
48 | 20, 2, 46, 1, 18, 47 | unitpidl1 32537 |
. . . . . . . . . . . . 13
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β ((πΎβ{π₯}) = π΅ β π₯ β (Unitβπ
))) |
49 | 45, 48 | mtbid 323 |
. . . . . . . . . . . 12
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β Β¬ π₯ β (Unitβπ
)) |
50 | 32, 49 | olcnd 875 |
. . . . . . . . . . 11
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π‘ β (Unitβπ
)) |
51 | 27 | eqcomd 2738 |
. . . . . . . . . . 11
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (π‘(.rβπ
)π₯) = π) |
52 | 1, 2, 16, 18, 19, 20, 21, 25, 50, 51 | dvdsruassoi 32484 |
. . . . . . . . . 10
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (π₯(β₯rβπ
)π β§ π(β₯rβπ
)π₯)) |
53 | 1, 2, 16, 18, 19, 25 | rspsnasso 32487 |
. . . . . . . . . 10
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β ((π₯(β₯rβπ
)π β§ π(β₯rβπ
)π₯) β (πΎβ{π}) = (πΎβ{π₯}))) |
54 | 52, 53 | mpbid 231 |
. . . . . . . . 9
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (πΎβ{π}) = (πΎβ{π₯})) |
55 | 54, 34 | eqtr4d 2775 |
. . . . . . . 8
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β (πΎβ{π}) = π) |
56 | 4, 55 | eqtr2id 2785 |
. . . . . . 7
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π = π) |
57 | 40 | simpld 495 |
. . . . . . . 8
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β Β¬ π = π) |
58 | 57 | ad4antr 730 |
. . . . . . 7
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β Β¬ π = π) |
59 | 56, 58 | pm2.21dd 194 |
. . . . . 6
β’
(((((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β§ π‘ β π΅) β§ π = (π‘(.rβπ
)π₯)) β π β (MaxIdealβπ
)) |
60 | 37 | simpld 495 |
. . . . . . . . . 10
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β π β π) |
61 | 60 | ad2antrr 724 |
. . . . . . . . 9
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π β π) |
62 | 10 | snssd 4812 |
. . . . . . . . . . . . 13
β’ (π β {π} β π΅) |
63 | 2, 1 | rspssid 20847 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ {π} β π΅) β {π} β (πΎβ{π})) |
64 | 22, 62, 63 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β {π} β (πΎβ{π})) |
65 | 64, 4 | sseqtrrdi 4033 |
. . . . . . . . . . 11
β’ (π β {π} β π) |
66 | | snssg 4787 |
. . . . . . . . . . . 12
β’ (π β π΅ β (π β π β {π} β π)) |
67 | 66 | biimpar 478 |
. . . . . . . . . . 11
β’ ((π β π΅ β§ {π} β π) β π β π) |
68 | 10, 65, 67 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β π β π) |
69 | 68 | ad6antr 734 |
. . . . . . . . 9
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π β π) |
70 | 61, 69 | sseldd 3983 |
. . . . . . . 8
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π β π) |
71 | 70, 33 | eleqtrd 2835 |
. . . . . . 7
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π β (πΎβ{π₯})) |
72 | 1, 21, 2 | rspsnel 32479 |
. . . . . . . 8
β’ ((π
β Ring β§ π₯ β π΅) β (π β (πΎβ{π₯}) β βπ‘ β π΅ π = (π‘(.rβπ
)π₯))) |
73 | 72 | biimpa 477 |
. . . . . . 7
β’ (((π
β Ring β§ π₯ β π΅) β§ π β (πΎβ{π₯})) β βπ‘ β π΅ π = (π‘(.rβπ
)π₯)) |
74 | 24, 17, 71, 73 | syl21anc 836 |
. . . . . 6
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β βπ‘ β π΅ π = (π‘(.rβπ
)π₯)) |
75 | 59, 74 | r19.29a 3162 |
. . . . 5
β’
(((((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β§ π₯ β π΅) β§ π = (πΎβ{π₯})) β π β (MaxIdealβπ
)) |
76 | | simplr 767 |
. . . . . . 7
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β π β (LIdealβπ
)) |
77 | 7 | elin2d 4199 |
. . . . . . . . 9
β’ (π β π
β LPIR) |
78 | | eqid 2732 |
. . . . . . . . . . 11
β’
(LPIdealβπ
) =
(LPIdealβπ
) |
79 | | eqid 2732 |
. . . . . . . . . . 11
β’
(LIdealβπ
) =
(LIdealβπ
) |
80 | 78, 79 | islpir 20886 |
. . . . . . . . . 10
β’ (π
β LPIR β (π
β Ring β§
(LIdealβπ
) =
(LPIdealβπ
))) |
81 | 80 | simprbi 497 |
. . . . . . . . 9
β’ (π
β LPIR β
(LIdealβπ
) =
(LPIdealβπ
)) |
82 | 77, 81 | syl 17 |
. . . . . . . 8
β’ (π β (LIdealβπ
) = (LPIdealβπ
)) |
83 | 82 | ad4antr 730 |
. . . . . . 7
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β (LIdealβπ
) = (LPIdealβπ
)) |
84 | 76, 83 | eleqtrd 2835 |
. . . . . 6
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β π β (LPIdealβπ
)) |
85 | 78, 2, 1 | islpidl 20883 |
. . . . . . 7
β’ (π
β Ring β (π β (LPIdealβπ
) β βπ₯ β π΅ π = (πΎβ{π₯}))) |
86 | 85 | biimpa 477 |
. . . . . 6
β’ ((π
β Ring β§ π β (LPIdealβπ
)) β βπ₯ β π΅ π = (πΎβ{π₯})) |
87 | 23, 84, 86 | syl2anc 584 |
. . . . 5
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β βπ₯ β π΅ π = (πΎβ{π₯})) |
88 | 75, 87 | r19.29a 3162 |
. . . 4
β’
(((((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β§ π β (LIdealβπ
)) β§ Β¬ (π β π β (π = π β¨ π = π΅))) β π β (MaxIdealβπ
)) |
89 | | mxidlirred.1 |
. . . . . . . 8
β’ (π β π β (LIdealβπ
)) |
90 | 89 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β π β (LIdealβπ
)) |
91 | 30, 20 | irrednu 20238 |
. . . . . . . . . 10
β’ (π β (Irredβπ
) β Β¬ π β (Unitβπ
)) |
92 | 91 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π β (Irredβπ
)) β Β¬ π β (Unitβπ
)) |
93 | 20, 2, 4, 1, 10, 8 | unitpidl1 32537 |
. . . . . . . . . . 11
β’ (π β (π = π΅ β π β (Unitβπ
))) |
94 | 93 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (Irredβπ
)) β (π = π΅ β π β (Unitβπ
))) |
95 | 94 | necon3abid 2977 |
. . . . . . . . 9
β’ ((π β§ π β (Irredβπ
)) β (π β π΅ β Β¬ π β (Unitβπ
))) |
96 | 92, 95 | mpbird 256 |
. . . . . . . 8
β’ ((π β§ π β (Irredβπ
)) β π β π΅) |
97 | 96 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β π β π΅) |
98 | 90, 97 | jca 512 |
. . . . . 6
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β (π β (LIdealβπ
) β§ π β π΅)) |
99 | 1 | ismxidl 32573 |
. . . . . . . . . . 11
β’ (π
β Ring β (π β (MaxIdealβπ
) β (π β (LIdealβπ
) β§ π β π΅ β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))))) |
100 | 22, 99 | syl 17 |
. . . . . . . . . 10
β’ (π β (π β (MaxIdealβπ
) β (π β (LIdealβπ
) β§ π β π΅ β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))))) |
101 | | df-3an 1089 |
. . . . . . . . . 10
β’ ((π β (LIdealβπ
) β§ π β π΅ β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))) β ((π β (LIdealβπ
) β§ π β π΅) β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅)))) |
102 | 100, 101 | bitrdi 286 |
. . . . . . . . 9
β’ (π β (π β (MaxIdealβπ
) β ((π β (LIdealβπ
) β§ π β π΅) β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))))) |
103 | 102 | notbid 317 |
. . . . . . . 8
β’ (π β (Β¬ π β (MaxIdealβπ
) β Β¬ ((π β (LIdealβπ
) β§ π β π΅) β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))))) |
104 | 103 | biimpa 477 |
. . . . . . 7
β’ ((π β§ Β¬ π β (MaxIdealβπ
)) β Β¬ ((π β (LIdealβπ
) β§ π β π΅) β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅)))) |
105 | 104 | adantlr 713 |
. . . . . 6
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β Β¬ ((π β (LIdealβπ
) β§ π β π΅) β§ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅)))) |
106 | 98, 105 | mpnanrd 410 |
. . . . 5
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β Β¬ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))) |
107 | | rexnal 3100 |
. . . . 5
β’
(βπ β
(LIdealβπ
) Β¬
(π β π β (π = π β¨ π = π΅)) β Β¬ βπ β (LIdealβπ
)(π β π β (π = π β¨ π = π΅))) |
108 | 106, 107 | sylibr 233 |
. . . 4
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β βπ β (LIdealβπ
) Β¬ (π β π β (π = π β¨ π = π΅))) |
109 | 88, 108 | r19.29a 3162 |
. . 3
β’ (((π β§ π β (Irredβπ
)) β§ Β¬ π β (MaxIdealβπ
)) β π β (MaxIdealβπ
)) |
110 | 109 | pm2.18da 798 |
. 2
β’ ((π β§ π β (Irredβπ
)) β π β (MaxIdealβπ
)) |
111 | 15, 110 | impbida 799 |
1
β’ (π β (π β (MaxIdealβπ
) β π β (Irredβπ
))) |