Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirred Structured version   Visualization version   GIF version

Theorem mxidlirred 33450
Description: In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirred.b 𝐵 = (Base‘𝑅)
mxidlirred.k 𝐾 = (RSpan‘𝑅)
mxidlirred.0 0 = (0g𝑅)
mxidlirred.m 𝑀 = (𝐾‘{𝑋})
mxidlirred.r (𝜑𝑅 ∈ PID)
mxidlirred.x (𝜑𝑋𝐵)
mxidlirred.y (𝜑𝑋0 )
mxidlirred.1 (𝜑𝑀 ∈ (LIdeal‘𝑅))
Assertion
Ref Expression
mxidlirred (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅)))

Proof of Theorem mxidlirred
Dummy variables 𝑡 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirred.b . . 3 𝐵 = (Base‘𝑅)
2 mxidlirred.k . . 3 𝐾 = (RSpan‘𝑅)
3 mxidlirred.0 . . 3 0 = (0g𝑅)
4 mxidlirred.m . . 3 𝑀 = (𝐾‘{𝑋})
5 mxidlirred.r . . . . . 6 (𝜑𝑅 ∈ PID)
6 df-pid 21254 . . . . . 6 PID = (IDomn ∩ LPIR)
75, 6eleqtrdi 2839 . . . . 5 (𝜑𝑅 ∈ (IDomn ∩ LPIR))
87elin1d 4170 . . . 4 (𝜑𝑅 ∈ IDomn)
98adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ IDomn)
10 mxidlirred.x . . . 4 (𝜑𝑋𝐵)
1110adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋𝐵)
12 mxidlirred.y . . . 4 (𝜑𝑋0 )
1312adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋0 )
14 simpr 484 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
151, 2, 3, 4, 9, 11, 13, 14mxidlirredi 33449 . 2 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋 ∈ (Irred‘𝑅))
16 eqid 2730 . . . . . . . . . . 11 (∥r𝑅) = (∥r𝑅)
17 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑥𝐵)
1817ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑥𝐵)
1910ad8antr 740 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋𝐵)
20 eqid 2730 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
21 eqid 2730 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
228idomringd 20644 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
2322ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . . 12 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑅 ∈ Ring)
2524ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
26 simplr 768 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑡𝐵)
27 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋 = (𝑡(.r𝑅)𝑥))
28 simp-8r 791 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋 ∈ (Irred‘𝑅))
2927, 28eqeltrrd 2830 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡(.r𝑅)𝑥) ∈ (Irred‘𝑅))
30 eqid 2730 . . . . . . . . . . . . . 14 (Irred‘𝑅) = (Irred‘𝑅)
3130, 1, 20, 21irredmul 20345 . . . . . . . . . . . . 13 ((𝑡𝐵𝑥𝐵 ∧ (𝑡(.r𝑅)𝑥) ∈ (Irred‘𝑅)) → (𝑡 ∈ (Unit‘𝑅) ∨ 𝑥 ∈ (Unit‘𝑅)))
3226, 18, 29, 31syl3anc 1373 . . . . . . . . . . . 12 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡 ∈ (Unit‘𝑅) ∨ 𝑥 ∈ (Unit‘𝑅)))
33 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑘 = (𝐾‘{𝑥}))
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘 = (𝐾‘{𝑥}))
35 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
36 annim 403 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀𝑘 ∧ ¬ (𝑘 = 𝑀𝑘 = 𝐵)) ↔ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
3735, 36sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (𝑀𝑘 ∧ ¬ (𝑘 = 𝑀𝑘 = 𝐵)))
3837simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ (𝑘 = 𝑀𝑘 = 𝐵))
39 ioran 985 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑘 = 𝑀𝑘 = 𝐵) ↔ (¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵))
4038, 39sylib 218 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵))
4140simprd 495 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ 𝑘 = 𝐵)
4241neqned 2933 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘𝐵)
4342ad4antr 732 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘𝐵)
4434, 43eqnetrrd 2994 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑥}) ≠ 𝐵)
4544neneqd 2931 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ (𝐾‘{𝑥}) = 𝐵)
46 eqid 2730 . . . . . . . . . . . . . 14 (𝐾‘{𝑥}) = (𝐾‘{𝑥})
478ad8antr 740 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑅 ∈ IDomn)
4820, 2, 46, 1, 18, 47unitpidl1 33402 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ((𝐾‘{𝑥}) = 𝐵𝑥 ∈ (Unit‘𝑅)))
4945, 48mtbid 324 . . . . . . . . . . . 12 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ 𝑥 ∈ (Unit‘𝑅))
5032, 49olcnd 877 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑡 ∈ (Unit‘𝑅))
5127eqcomd 2736 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡(.r𝑅)𝑥) = 𝑋)
521, 2, 16, 18, 19, 20, 21, 25, 50, 51dvdsruassoi 33362 . . . . . . . . . 10 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑥(∥r𝑅)𝑋𝑋(∥r𝑅)𝑥))
531, 2, 16, 18, 19, 25rspsnasso 33366 . . . . . . . . . 10 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ((𝑥(∥r𝑅)𝑋𝑋(∥r𝑅)𝑥) ↔ (𝐾‘{𝑋}) = (𝐾‘{𝑥})))
5452, 53mpbid 232 . . . . . . . . 9 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑋}) = (𝐾‘{𝑥}))
5554, 34eqtr4d 2768 . . . . . . . 8 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑋}) = 𝑘)
564, 55eqtr2id 2778 . . . . . . 7 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘 = 𝑀)
5740simpld 494 . . . . . . . 8 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ 𝑘 = 𝑀)
5857ad4antr 732 . . . . . . 7 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ 𝑘 = 𝑀)
5956, 58pm2.21dd 195 . . . . . 6 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6037simpld 494 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑀𝑘)
6160ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑀𝑘)
6210snssd 4776 . . . . . . . . . . . . 13 (𝜑 → {𝑋} ⊆ 𝐵)
632, 1rspssid 21153 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋}))
6422, 62, 63syl2anc 584 . . . . . . . . . . . 12 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
6564, 4sseqtrrdi 3991 . . . . . . . . . . 11 (𝜑 → {𝑋} ⊆ 𝑀)
66 snssg 4750 . . . . . . . . . . . 12 (𝑋𝐵 → (𝑋𝑀 ↔ {𝑋} ⊆ 𝑀))
6766biimpar 477 . . . . . . . . . . 11 ((𝑋𝐵 ∧ {𝑋} ⊆ 𝑀) → 𝑋𝑀)
6810, 65, 67syl2anc 584 . . . . . . . . . 10 (𝜑𝑋𝑀)
6968ad6antr 736 . . . . . . . . 9 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋𝑀)
7061, 69sseldd 3950 . . . . . . . 8 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋𝑘)
7170, 33eleqtrd 2831 . . . . . . 7 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋 ∈ (𝐾‘{𝑥}))
721, 21, 2elrspsn 21157 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑋 ∈ (𝐾‘{𝑥}) ↔ ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥)))
7372biimpa 476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋 ∈ (𝐾‘{𝑥})) → ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥))
7424, 17, 71, 73syl21anc 837 . . . . . 6 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥))
7559, 74r19.29a 3142 . . . . 5 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑀 ∈ (MaxIdeal‘𝑅))
76 simplr 768 . . . . . . 7 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘 ∈ (LIdeal‘𝑅))
777elin2d 4171 . . . . . . . . 9 (𝜑𝑅 ∈ LPIR)
78 eqid 2730 . . . . . . . . . . 11 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
79 eqid 2730 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8078, 79islpir 21245 . . . . . . . . . 10 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
8180simprbi 496 . . . . . . . . 9 (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8277, 81syl 17 . . . . . . . 8 (𝜑 → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8382ad4antr 732 . . . . . . 7 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8476, 83eleqtrd 2831 . . . . . 6 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘 ∈ (LPIdeal‘𝑅))
8578, 2, 1islpidl 21242 . . . . . . 7 (𝑅 ∈ Ring → (𝑘 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥})))
8685biimpa 476 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥}))
8723, 84, 86syl2anc 584 . . . . 5 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥}))
8875, 87r19.29a 3142 . . . 4 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑀 ∈ (MaxIdeal‘𝑅))
89 mxidlirred.1 . . . . . . . 8 (𝜑𝑀 ∈ (LIdeal‘𝑅))
9089ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
9130, 20irrednu 20341 . . . . . . . . . 10 (𝑋 ∈ (Irred‘𝑅) → ¬ 𝑋 ∈ (Unit‘𝑅))
9291adantl 481 . . . . . . . . 9 ((𝜑𝑋 ∈ (Irred‘𝑅)) → ¬ 𝑋 ∈ (Unit‘𝑅))
9320, 2, 4, 1, 10, 8unitpidl1 33402 . . . . . . . . . . 11 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
9493adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ∈ (Irred‘𝑅)) → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
9594necon3abid 2962 . . . . . . . . 9 ((𝜑𝑋 ∈ (Irred‘𝑅)) → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
9692, 95mpbird 257 . . . . . . . 8 ((𝜑𝑋 ∈ (Irred‘𝑅)) → 𝑀𝐵)
9796adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
9890, 97jca 511 . . . . . 6 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵))
991ismxidl 33440 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
10022, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
101 df-3an 1088 . . . . . . . . . 10 ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ↔ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
102100, 101bitrdi 287 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
103102notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑀 ∈ (MaxIdeal‘𝑅) ↔ ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
104103biimpa 476 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
105104adantlr 715 . . . . . 6 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
10698, 105mpnanrd 409 . . . . 5 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
107 rexnal 3083 . . . . 5 (∃𝑘 ∈ (LIdeal‘𝑅) ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)) ↔ ¬ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
108106, 107sylibr 234 . . . 4 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∃𝑘 ∈ (LIdeal‘𝑅) ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
10988, 108r19.29a 3142 . . 3 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
110109pm2.18da 799 . 2 ((𝜑𝑋 ∈ (Irred‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
11115, 110impbida 800 1 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  wss 3917  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  0gc0g 17409  Ringcrg 20149  rcdsr 20270  Unitcui 20271  Irredcir 20272  IDomncidom 20609  LIdealclidl 21123  RSpancrsp 21124  LPIdealclpidl 21237  LPIRclpir 21238  PIDcpid 21253  MaxIdealcmxidl 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-nzr 20429  df-subrg 20486  df-domn 20611  df-idom 20612  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-lpidl 21239  df-lpir 21240  df-pid 21254  df-mxidl 33438
This theorem is referenced by:  rprmirredb  33510  algextdeglem4  33717
  Copyright terms: Public domain W3C validator