Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirred Structured version   Visualization version   GIF version

Theorem mxidlirred 33443
Description: In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirred.b 𝐵 = (Base‘𝑅)
mxidlirred.k 𝐾 = (RSpan‘𝑅)
mxidlirred.0 0 = (0g𝑅)
mxidlirred.m 𝑀 = (𝐾‘{𝑋})
mxidlirred.r (𝜑𝑅 ∈ PID)
mxidlirred.x (𝜑𝑋𝐵)
mxidlirred.y (𝜑𝑋0 )
mxidlirred.1 (𝜑𝑀 ∈ (LIdeal‘𝑅))
Assertion
Ref Expression
mxidlirred (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅)))

Proof of Theorem mxidlirred
Dummy variables 𝑡 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirred.b . . 3 𝐵 = (Base‘𝑅)
2 mxidlirred.k . . 3 𝐾 = (RSpan‘𝑅)
3 mxidlirred.0 . . 3 0 = (0g𝑅)
4 mxidlirred.m . . 3 𝑀 = (𝐾‘{𝑋})
5 mxidlirred.r . . . . . 6 (𝜑𝑅 ∈ PID)
6 df-pid 21247 . . . . . 6 PID = (IDomn ∩ LPIR)
75, 6eleqtrdi 2838 . . . . 5 (𝜑𝑅 ∈ (IDomn ∩ LPIR))
87elin1d 4167 . . . 4 (𝜑𝑅 ∈ IDomn)
98adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ IDomn)
10 mxidlirred.x . . . 4 (𝜑𝑋𝐵)
1110adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋𝐵)
12 mxidlirred.y . . . 4 (𝜑𝑋0 )
1312adantr 480 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋0 )
14 simpr 484 . . 3 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
151, 2, 3, 4, 9, 11, 13, 14mxidlirredi 33442 . 2 ((𝜑𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑋 ∈ (Irred‘𝑅))
16 eqid 2729 . . . . . . . . . . 11 (∥r𝑅) = (∥r𝑅)
17 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑥𝐵)
1817ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑥𝐵)
1910ad8antr 740 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋𝐵)
20 eqid 2729 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
21 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
228idomringd 20637 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
2322ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . . 12 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑅 ∈ Ring)
2524ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
26 simplr 768 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑡𝐵)
27 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋 = (𝑡(.r𝑅)𝑥))
28 simp-8r 791 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑋 ∈ (Irred‘𝑅))
2927, 28eqeltrrd 2829 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡(.r𝑅)𝑥) ∈ (Irred‘𝑅))
30 eqid 2729 . . . . . . . . . . . . . 14 (Irred‘𝑅) = (Irred‘𝑅)
3130, 1, 20, 21irredmul 20338 . . . . . . . . . . . . 13 ((𝑡𝐵𝑥𝐵 ∧ (𝑡(.r𝑅)𝑥) ∈ (Irred‘𝑅)) → (𝑡 ∈ (Unit‘𝑅) ∨ 𝑥 ∈ (Unit‘𝑅)))
3226, 18, 29, 31syl3anc 1373 . . . . . . . . . . . 12 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡 ∈ (Unit‘𝑅) ∨ 𝑥 ∈ (Unit‘𝑅)))
33 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑘 = (𝐾‘{𝑥}))
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘 = (𝐾‘{𝑥}))
35 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
36 annim 403 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀𝑘 ∧ ¬ (𝑘 = 𝑀𝑘 = 𝐵)) ↔ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
3735, 36sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (𝑀𝑘 ∧ ¬ (𝑘 = 𝑀𝑘 = 𝐵)))
3837simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ (𝑘 = 𝑀𝑘 = 𝐵))
39 ioran 985 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑘 = 𝑀𝑘 = 𝐵) ↔ (¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵))
4038, 39sylib 218 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵))
4140simprd 495 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ 𝑘 = 𝐵)
4241neqned 2932 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘𝐵)
4342ad4antr 732 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘𝐵)
4434, 43eqnetrrd 2993 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑥}) ≠ 𝐵)
4544neneqd 2930 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ (𝐾‘{𝑥}) = 𝐵)
46 eqid 2729 . . . . . . . . . . . . . 14 (𝐾‘{𝑥}) = (𝐾‘{𝑥})
478ad8antr 740 . . . . . . . . . . . . . 14 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑅 ∈ IDomn)
4820, 2, 46, 1, 18, 47unitpidl1 33395 . . . . . . . . . . . . 13 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ((𝐾‘{𝑥}) = 𝐵𝑥 ∈ (Unit‘𝑅)))
4945, 48mtbid 324 . . . . . . . . . . . 12 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ 𝑥 ∈ (Unit‘𝑅))
5032, 49olcnd 877 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑡 ∈ (Unit‘𝑅))
5127eqcomd 2735 . . . . . . . . . . 11 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑡(.r𝑅)𝑥) = 𝑋)
521, 2, 16, 18, 19, 20, 21, 25, 50, 51dvdsruassoi 33355 . . . . . . . . . 10 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝑥(∥r𝑅)𝑋𝑋(∥r𝑅)𝑥))
531, 2, 16, 18, 19, 25rspsnasso 33359 . . . . . . . . . 10 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ((𝑥(∥r𝑅)𝑋𝑋(∥r𝑅)𝑥) ↔ (𝐾‘{𝑋}) = (𝐾‘{𝑥})))
5452, 53mpbid 232 . . . . . . . . 9 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑋}) = (𝐾‘{𝑥}))
5554, 34eqtr4d 2767 . . . . . . . 8 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → (𝐾‘{𝑋}) = 𝑘)
564, 55eqtr2id 2777 . . . . . . 7 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑘 = 𝑀)
5740simpld 494 . . . . . . . 8 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ¬ 𝑘 = 𝑀)
5857ad4antr 732 . . . . . . 7 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → ¬ 𝑘 = 𝑀)
5956, 58pm2.21dd 195 . . . . . 6 (((((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) ∧ 𝑡𝐵) ∧ 𝑋 = (𝑡(.r𝑅)𝑥)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6037simpld 494 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑀𝑘)
6160ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑀𝑘)
6210snssd 4773 . . . . . . . . . . . . 13 (𝜑 → {𝑋} ⊆ 𝐵)
632, 1rspssid 21146 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋}))
6422, 62, 63syl2anc 584 . . . . . . . . . . . 12 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
6564, 4sseqtrrdi 3988 . . . . . . . . . . 11 (𝜑 → {𝑋} ⊆ 𝑀)
66 snssg 4747 . . . . . . . . . . . 12 (𝑋𝐵 → (𝑋𝑀 ↔ {𝑋} ⊆ 𝑀))
6766biimpar 477 . . . . . . . . . . 11 ((𝑋𝐵 ∧ {𝑋} ⊆ 𝑀) → 𝑋𝑀)
6810, 65, 67syl2anc 584 . . . . . . . . . 10 (𝜑𝑋𝑀)
6968ad6antr 736 . . . . . . . . 9 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋𝑀)
7061, 69sseldd 3947 . . . . . . . 8 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋𝑘)
7170, 33eleqtrd 2830 . . . . . . 7 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑋 ∈ (𝐾‘{𝑥}))
721, 21, 2elrspsn 21150 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑋 ∈ (𝐾‘{𝑥}) ↔ ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥)))
7372biimpa 476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋 ∈ (𝐾‘{𝑥})) → ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥))
7424, 17, 71, 73syl21anc 837 . . . . . 6 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → ∃𝑡𝐵 𝑋 = (𝑡(.r𝑅)𝑥))
7559, 74r19.29a 3141 . . . . 5 (((((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ∧ 𝑥𝐵) ∧ 𝑘 = (𝐾‘{𝑥})) → 𝑀 ∈ (MaxIdeal‘𝑅))
76 simplr 768 . . . . . . 7 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘 ∈ (LIdeal‘𝑅))
777elin2d 4168 . . . . . . . . 9 (𝜑𝑅 ∈ LPIR)
78 eqid 2729 . . . . . . . . . . 11 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
79 eqid 2729 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8078, 79islpir 21238 . . . . . . . . . 10 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
8180simprbi 496 . . . . . . . . 9 (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8277, 81syl 17 . . . . . . . 8 (𝜑 → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8382ad4antr 732 . . . . . . 7 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
8476, 83eleqtrd 2830 . . . . . 6 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑘 ∈ (LPIdeal‘𝑅))
8578, 2, 1islpidl 21235 . . . . . . 7 (𝑅 ∈ Ring → (𝑘 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥})))
8685biimpa 476 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥}))
8723, 84, 86syl2anc 584 . . . . 5 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → ∃𝑥𝐵 𝑘 = (𝐾‘{𝑥}))
8875, 87r19.29a 3141 . . . 4 (((((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) → 𝑀 ∈ (MaxIdeal‘𝑅))
89 mxidlirred.1 . . . . . . . 8 (𝜑𝑀 ∈ (LIdeal‘𝑅))
9089ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
9130, 20irrednu 20334 . . . . . . . . . 10 (𝑋 ∈ (Irred‘𝑅) → ¬ 𝑋 ∈ (Unit‘𝑅))
9291adantl 481 . . . . . . . . 9 ((𝜑𝑋 ∈ (Irred‘𝑅)) → ¬ 𝑋 ∈ (Unit‘𝑅))
9320, 2, 4, 1, 10, 8unitpidl1 33395 . . . . . . . . . . 11 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
9493adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ∈ (Irred‘𝑅)) → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
9594necon3abid 2961 . . . . . . . . 9 ((𝜑𝑋 ∈ (Irred‘𝑅)) → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
9692, 95mpbird 257 . . . . . . . 8 ((𝜑𝑋 ∈ (Irred‘𝑅)) → 𝑀𝐵)
9796adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
9890, 97jca 511 . . . . . 6 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵))
991ismxidl 33433 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
10022, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
101 df-3an 1088 . . . . . . . . . 10 ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))) ↔ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
102100, 101bitrdi 287 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
103102notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑀 ∈ (MaxIdeal‘𝑅) ↔ ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))))
104103biimpa 476 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
105104adantlr 715 . . . . . 6 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵) ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵))))
10698, 105mpnanrd 409 . . . . 5 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
107 rexnal 3082 . . . . 5 (∃𝑘 ∈ (LIdeal‘𝑅) ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)) ↔ ¬ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
108106, 107sylibr 234 . . . 4 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∃𝑘 ∈ (LIdeal‘𝑅) ¬ (𝑀𝑘 → (𝑘 = 𝑀𝑘 = 𝐵)))
10988, 108r19.29a 3141 . . 3 (((𝜑𝑋 ∈ (Irred‘𝑅)) ∧ ¬ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
110109pm2.18da 799 . 2 ((𝜑𝑋 ∈ (Irred‘𝑅)) → 𝑀 ∈ (MaxIdeal‘𝑅))
11115, 110impbida 800 1 (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Ringcrg 20142  rcdsr 20263  Unitcui 20264  Irredcir 20265  IDomncidom 20602  LIdealclidl 21116  RSpancrsp 21117  LPIdealclpidl 21230  LPIRclpir 21231  PIDcpid 21246  MaxIdealcmxidl 33430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-irred 20268  df-invr 20297  df-nzr 20422  df-subrg 20479  df-domn 20604  df-idom 20605  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-lpidl 21232  df-lpir 21233  df-pid 21247  df-mxidl 33431
This theorem is referenced by:  rprmirredb  33503  algextdeglem4  33710
  Copyright terms: Public domain W3C validator