Detailed syntax breakdown of Definition df-pjh
| Step | Hyp | Ref
| Expression |
| 1 | | cpjh 30903 |
. 2
class
projℎ |
| 2 | | vh |
. . 3
setvar ℎ |
| 3 | | cch 30895 |
. . 3
class
Cℋ |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | chba 30885 |
. . . 4
class
ℋ |
| 6 | 4 | cv 1538 |
. . . . . . 7
class 𝑥 |
| 7 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 8 | 7 | cv 1538 |
. . . . . . . 8
class 𝑧 |
| 9 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑦 |
| 11 | | cva 30886 |
. . . . . . . 8
class
+ℎ |
| 12 | 8, 10, 11 | co 7414 |
. . . . . . 7
class (𝑧 +ℎ 𝑦) |
| 13 | 6, 12 | wceq 1539 |
. . . . . 6
wff 𝑥 = (𝑧 +ℎ 𝑦) |
| 14 | 2 | cv 1538 |
. . . . . . 7
class ℎ |
| 15 | | cort 30896 |
. . . . . . 7
class
⊥ |
| 16 | 14, 15 | cfv 6542 |
. . . . . 6
class
(⊥‘ℎ) |
| 17 | 13, 9, 16 | wrex 3059 |
. . . . 5
wff
∃𝑦 ∈
(⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦) |
| 18 | 17, 7, 14 | crio 7370 |
. . . 4
class
(℩𝑧
∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)) |
| 19 | 4, 5, 18 | cmpt 5207 |
. . 3
class (𝑥 ∈ ℋ ↦
(℩𝑧 ∈
ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) |
| 20 | 2, 3, 19 | cmpt 5207 |
. 2
class (ℎ ∈
Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |
| 21 | 1, 20 | wceq 1539 |
1
wff
projℎ = (ℎ ∈ Cℋ
↦ (𝑥 ∈ ℋ
↦ (℩𝑧
∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |