![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-pjh | Structured version Visualization version GIF version |
Description: Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in [Kalmbach] p. 66, adopted as a definition. (projℎ‘𝐻)‘𝐴 is the projection of vector 𝐴 onto closed subspace 𝐻. Note that the range of projℎ is the set of all projection operators, so 𝑇 ∈ ran projℎ means that 𝑇 is a projection operator. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-pjh | ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpjh 30455 | . 2 class projℎ | |
2 | vh | . . 3 setvar ℎ | |
3 | cch 30447 | . . 3 class Cℋ | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | chba 30437 | . . . 4 class ℋ | |
6 | 4 | cv 1538 | . . . . . . 7 class 𝑥 |
7 | vz | . . . . . . . . 9 setvar 𝑧 | |
8 | 7 | cv 1538 | . . . . . . . 8 class 𝑧 |
9 | vy | . . . . . . . . 9 setvar 𝑦 | |
10 | 9 | cv 1538 | . . . . . . . 8 class 𝑦 |
11 | cva 30438 | . . . . . . . 8 class +ℎ | |
12 | 8, 10, 11 | co 7413 | . . . . . . 7 class (𝑧 +ℎ 𝑦) |
13 | 6, 12 | wceq 1539 | . . . . . 6 wff 𝑥 = (𝑧 +ℎ 𝑦) |
14 | 2 | cv 1538 | . . . . . . 7 class ℎ |
15 | cort 30448 | . . . . . . 7 class ⊥ | |
16 | 14, 15 | cfv 6544 | . . . . . 6 class (⊥‘ℎ) |
17 | 13, 9, 16 | wrex 3068 | . . . . 5 wff ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦) |
18 | 17, 7, 14 | crio 7368 | . . . 4 class (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)) |
19 | 4, 5, 18 | cmpt 5232 | . . 3 class (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) |
20 | 2, 3, 19 | cmpt 5232 | . 2 class (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |
21 | 1, 20 | wceq 1539 | 1 wff projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: pjhfval 30914 pjmfn 31233 |
Copyright terms: Public domain | W3C validator |