Home | Metamath
Proof Explorer Theorem List (p. 310 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aciunf1lem 30901* | Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ Ⅎ𝑗𝐴 & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥)) | ||
Theorem | aciunf1 30902* | Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪ 𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘)) | ||
Theorem | ofoprabco 30903* | Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ Ⅎ𝑎𝑀 & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 = (𝑎 ∈ 𝐴 ↦ 〈(𝐹‘𝑎), (𝐺‘𝑎)〉)) & ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑁 ∘ 𝑀)) | ||
Theorem | ofpreima 30904* | Express the preimage of a function operation as a union of preimages. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 Fn (𝐵 × 𝐶)) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = ∪ 𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | ||
Theorem | ofpreima2 30905* | Express the preimage of a function operation as a union of preimages. This version of ofpreima 30904 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 Fn (𝐵 × 𝐶)) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = ∪ 𝑝 ∈ ((◡𝑅 “ 𝐷) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | ||
Theorem | funcnvmpt 30906* | Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 = 𝐵)) | ||
Theorem | funcnv5mpt 30907* | Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶))) | ||
Theorem | funcnv4mpt 30908* | Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) | ||
Theorem | preimane 30909 | Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐹) ⇒ ⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) | ||
Theorem | fnpreimac 30910* | Choose a set 𝑥 containing a preimage of each element of a given set 𝐵. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵)) | ||
Theorem | fgreu 30911* | Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ∃!𝑝 ∈ 𝐹 𝑋 = (1st ‘𝑝)) | ||
Theorem | fcnvgreu 30912* | If the converse of a relation 𝐴 is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (((Rel 𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝)) | ||
Theorem | rnmposs 30913* | The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) | ||
Theorem | mptssALT 30914* | Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss 5939. (Contributed by Thierry Arnoux, 30-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | dfcnv2 30915* | Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.) |
⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) | ||
Theorem | fnimatp 30916 | The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) | ||
Theorem | fnunres2 30917 | Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | ||
Theorem | mpomptxf 30918* | Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.) |
⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
Theorem | suppovss 30919* | A bound for the support of an operation. (Contributed by Thierry Arnoux, 19-Jul-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) | ||
Theorem | fvdifsupp 30920 | Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) | ||
Theorem | fmptssfisupp 30921* | The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) finSupp 𝑍) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) finSupp 𝑍) | ||
Theorem | suppiniseg 30922 | Relation between the support (𝐹 supp 𝑍) and the initial segment (◡𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | ||
Theorem | fsuppinisegfi 30923 | The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) | ||
Theorem | fressupp 30924 | The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍}))) | ||
Theorem | fdifsuppconst 30925 | A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) | ||
Theorem | ressupprn 30926 | The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 })) | ||
Theorem | supppreima 30927 | Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) | ||
Theorem | fsupprnfi 30928 | Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ ( 0 ∈ 𝑊 ∧ 𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin) | ||
Theorem | cosnopne 30929 | Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) | ||
Theorem | cosnop 30930 | Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) | ||
Theorem | cnvprop 30931 | Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) | ||
Theorem | brprop 30932 | Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) | ||
Theorem | mptprop 30933* | Rewrite pairs of ordered pairs as mapping to functions. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) | ||
Theorem | coprprop 30934 | Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∘ {〈𝐸, 𝐴〉, 〈𝐹, 𝐶〉}) = {〈𝐸, 𝐵〉, 〈𝐹, 𝐷〉}) | ||
Theorem | gtiso 30935 | Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , ◡ < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ◡ ≤ (𝐴, 𝐵))) | ||
Theorem | isoun 30936* | Infer an isomorphism from a union of two isomorphisms. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → 𝑧𝑆𝑤) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) → ¬ 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵) → ¬ 𝑧𝑆𝑤) & ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) & ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) ⇒ ⊢ (𝜑 → (𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷))) | ||
Theorem | disjdsct 30937* | A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6487) (Contributed by Thierry Arnoux, 28-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (𝑉 ∖ {∅})) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | df1stres 30938* | Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) | ||
Theorem | df2ndres 30939* | Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) | ||
Theorem | 1stpreimas 30940 | The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝑉) → (◡(1st ↾ 𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋}))) | ||
Theorem | 1stpreima 30941 | The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (𝐴 ⊆ 𝐵 → (◡(1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶)) | ||
Theorem | 2ndpreima 30942 | The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (𝐴 ⊆ 𝐶 → (◡(2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴)) | ||
Theorem | curry2ima 30943* | The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) | ||
Theorem | preiman0 30944 | The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ 𝐴) ≠ ∅) | ||
Theorem | intimafv 30945* | The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
Theorem | supssd 30946* | Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) | ||
Theorem | infssd 30947* | Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) | ||
Theorem | imafi2 30948 | The image by a finite set is finite. See also imafi 8920. (Contributed by Thierry Arnoux, 25-Apr-2020.) |
⊢ (𝐴 ∈ Fin → (𝐴 “ 𝐵) ∈ Fin) | ||
Theorem | unifi3 30949 | If a union is finite, then all its elements are finite. See unifi 9038. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (∪ 𝐴 ∈ Fin → 𝐴 ⊆ Fin) | ||
Theorem | snct 30950 | A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) | ||
Theorem | prct 30951 | An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ≼ ω) | ||
Theorem | mpocti 30952* | An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 ⇒ ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
Theorem | abrexct 30953* | An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
Theorem | mptctf 30954 | A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
Theorem | abrexctf 30955* | An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
Theorem | padct 30956* | Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝑍 ∈ 𝑉 ∧ ¬ 𝑍 ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) | ||
Theorem | cnvoprabOLD 30957* | The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 7873 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) & ⊢ (𝜓 → 𝑎 ∈ (V × V)) ⇒ ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} | ||
Theorem | f1od2 30958* | Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) & ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) | ||
Theorem | fcobij 30959* | Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)):(𝑆 ↑m 𝑅)–1-1-onto→(𝑇 ↑m 𝑅)) | ||
Theorem | fcobijfs 30960* | Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9097. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑆) & ⊢ 𝑄 = (𝐺‘𝑂) & ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} & ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) | ||
Theorem | suppss3 30961* | Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑍) → 𝐵 = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | fsuppcurry1 30962* | Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppcurry2 30963* | Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | offinsupp1 30964* | Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐹 finSupp 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) | ||
Theorem | ffs2 30965 | Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq 7962. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐶 = (𝐵 ∖ {𝑍}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) | ||
Theorem | ffsrn 30966 | The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
Theorem | resf1o 30967* | Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ 𝑋 = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶} & ⊢ 𝐹 = (𝑓 ∈ 𝑋 ↦ (𝑓 ↾ 𝐶)) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝐹:𝑋–1-1-onto→(𝐵 ↑m 𝐶)) | ||
Theorem | maprnin 30968* | Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} | ||
Theorem | fpwrelmapffslem 30969* | Lemma for fpwrelmapffs 30971. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐹:𝐴⟶𝒫 𝐵) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))}) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))) | ||
Theorem | fpwrelmap 30970* | Define a canonical mapping between functions from 𝐴 into subsets of 𝐵 and the relations with domain 𝐴 and range within 𝐵. Note that the same relation is used in axdc2lem 10135 and marypha2lem1 9124. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ⇒ ⊢ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) | ||
Theorem | fpwrelmapffs 30971* | Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) & ⊢ 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} ⇒ ⊢ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) | ||
Theorem | creq0 30972 | The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 11896. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ (𝐴 + (i · 𝐵)) = 0)) | ||
Theorem | 1nei 30973 | The imaginary unit i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ 1 ≠ i | ||
Theorem | 1neg1t1neg1 30974 | An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1) | ||
Theorem | nnmulge 30975 | Multiplying by a positive integer 𝑀 yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑀 · 𝑁)) | ||
Theorem | lt2addrd 30976* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrlelttric 30977 | Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | xaddeq0 30978 | Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵)) | ||
Theorem | xrinfm 30979 | The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ inf(ℝ*, ℝ*, < ) = -∞ | ||
Theorem | le2halvesd 30980 | A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐶 / 2)) & ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 2)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ 𝐶) | ||
Theorem | xraddge02 30981 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → 𝐴 ≤ (𝐴 +𝑒 𝐵))) | ||
Theorem | xrge0addge 30982 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 𝐴 ≤ (𝐴 +𝑒 𝐵)) | ||
Theorem | xlt2addrd 30983* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≠ -∞) & ⊢ (𝜑 → 𝐶 ≠ -∞) & ⊢ (𝜑 → 𝐴 < (𝐵 +𝑒 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ* ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrsupssd 30984 | Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) | ||
Theorem | xrge0infss 30985* | Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | xrge0infssd 30986 | Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) ⇒ ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) | ||
Theorem | xrge0addcld 30987 | Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | xrge0subcld 30988 | Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) | ||
Theorem | infxrge0lb 30989 | A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) | ||
Theorem | infxrge0glb 30990* | The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | ||
Theorem | infxrge0gelb 30991* | The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
Theorem | xrofsup 30992 | The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ*) & ⊢ (𝜑 → 𝑌 ⊆ ℝ*) & ⊢ (𝜑 → sup(𝑋, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → sup(𝑌, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → 𝑍 = ( +𝑒 “ (𝑋 × 𝑌))) ⇒ ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(𝑌, ℝ*, < ))) | ||
Theorem | supxrnemnf 30993 | The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) | ||
Theorem | xnn0gt0 30994 | Nonzero extended nonnegative integers are strictly greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ ((𝑁 ∈ ℕ0* ∧ 𝑁 ≠ 0) → 0 < 𝑁) | ||
Theorem | xnn01gt 30995 | An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ {0, 1} ↔ 1 < 𝑁)) | ||
Theorem | nn0xmulclb 30996 | Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0))) | ||
Theorem | joiniooico 30997 | Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ ∧ ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))) | ||
Theorem | ubico 30998 | A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴[,)𝐵)) | ||
Theorem | xeqlelt 30999 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
Theorem | eliccelico 31000 | Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |