| Metamath
Proof Explorer Theorem List (p. 310 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cph 30901 | Extend class notation with subspace sum in Cℋ. |
| class +ℋ | ||
| Syntax | cspn 30902 | Extend class notation with subspace span in Cℋ. |
| class span | ||
| Syntax | chj 30903 | Extend class notation with join in Cℋ. |
| class ∨ℋ | ||
| Syntax | chsup 30904 | Extend class notation with supremum of a collection in Cℋ. |
| class ∨ℋ | ||
| Syntax | c0h 30905 | Extend class notation with zero of Cℋ. |
| class 0ℋ | ||
| Syntax | ccm 30906 | Extend class notation with the commutes relation on a Hilbert lattice. |
| class 𝐶ℋ | ||
| Syntax | cpjh 30907 | Extend class notation with set of projections on a Hilbert space. |
| class projℎ | ||
| Syntax | chos 30908 | Extend class notation with sum of Hilbert space operators. |
| class +op | ||
| Syntax | chot 30909 | Extend class notation with scalar product of a Hilbert space operator. |
| class ·op | ||
| Syntax | chod 30910 | Extend class notation with difference of Hilbert space operators. |
| class −op | ||
| Syntax | chfs 30911 | Extend class notation with sum of Hilbert space functionals. |
| class +fn | ||
| Syntax | chft 30912 | Extend class notation with scalar product of Hilbert space functional. |
| class ·fn | ||
| Syntax | ch0o 30913 | Extend class notation with the Hilbert space zero operator. |
| class 0hop | ||
| Syntax | chio 30914 | Extend class notation with Hilbert space identity operator. |
| class Iop | ||
| Syntax | cnop 30915 | Extend class notation with the operator norm function. |
| class normop | ||
| Syntax | ccop 30916 | Extend class notation with set of continuous Hilbert space operators. |
| class ContOp | ||
| Syntax | clo 30917 | Extend class notation with set of linear Hilbert space operators. |
| class LinOp | ||
| Syntax | cbo 30918 | Extend class notation with set of bounded linear operators. |
| class BndLinOp | ||
| Syntax | cuo 30919 | Extend class notation with set of unitary Hilbert space operators. |
| class UniOp | ||
| Syntax | cho 30920 | Extend class notation with set of Hermitian Hilbert space operators. |
| class HrmOp | ||
| Syntax | cnmf 30921 | Extend class notation with the functional norm function. |
| class normfn | ||
| Syntax | cnl 30922 | Extend class notation with the functional nullspace function. |
| class null | ||
| Syntax | ccnfn 30923 | Extend class notation with set of continuous Hilbert space functionals. |
| class ContFn | ||
| Syntax | clf 30924 | Extend class notation with set of linear Hilbert space functionals. |
| class LinFn | ||
| Syntax | cado 30925 | Extend class notation with Hilbert space adjoint function. |
| class adjℎ | ||
| Syntax | cbr 30926 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
| class bra | ||
| Syntax | ck 30927 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
| class ketbra | ||
| Syntax | cleo 30928 | Extend class notation with positive operator ordering. |
| class ≤op | ||
| Syntax | cei 30929 | Extend class notation with Hilbert space eigenvector function. |
| class eigvec | ||
| Syntax | cel 30930 | Extend class notation with Hilbert space eigenvalue function. |
| class eigval | ||
| Syntax | cspc 30931 | Extend class notation with the spectrum of an operator. |
| class Lambda | ||
| Syntax | cst 30932 | Extend class notation with set of states on a Hilbert lattice. |
| class States | ||
| Syntax | chst 30933 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
| class CHStates | ||
| Syntax | ccv 30934 | Extend class notation with the covers relation on a Hilbert lattice. |
| class ⋖ℋ | ||
| Syntax | cat 30935 | Extend class notation with set of atoms on a Hilbert lattice. |
| class HAtoms | ||
| Syntax | cmd 30936 | Extend class notation with the modular pair relation on a Hilbert lattice. |
| class 𝑀ℋ | ||
| Syntax | cdmd 30937 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
| class 𝑀ℋ* | ||
| Definition | df-hnorm 30938 | Define the function for the norm of a vector of Hilbert space. See normval 31094 for its value and normcl 31095 for its closure. Theorems norm-i-i 31103, norm-ii-i 31107, and norm-iii-i 31109 show it has the expected properties of a norm. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | ||
| Definition | df-hba 30939 | Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30969). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31137. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
| Definition | df-h0v 30940 | Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31138. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
| Definition | df-hvsub 30941* | Define vector subtraction. See hvsubvali 30990 for its value and hvsubcli 30991 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | ||
| Definition | df-hlim 30942* | Define the limit relation for Hilbert space. See hlimi 31158 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | ||
| Definition | df-hcau 30943* | Define the set of Cauchy sequences on a Hilbert space. See hcau 31154 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | ||
| Theorem | h2hva 30944 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
| Theorem | h2hsm 30945 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | h2hnm 30946 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
| Theorem | h2hvs 30947 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
| Theorem | h2hmetdval 30948 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | h2hcau 30949 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
| Theorem | h2hlm 30950 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 30951 through axhcompl-zf 30968, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 30938 above. See also the comment in ax-hilex 30969. | ||
| Theorem | axhilex-zf 30951 | Derive Axiom ax-hilex 30969 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
| Theorem | axhfvadd-zf 30952 | Derive Axiom ax-hfvadd 30970 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Theorem | axhvcom-zf 30953 | Derive Axiom ax-hvcom 30971 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
| Theorem | axhvass-zf 30954 | Derive Axiom ax-hvass 30972 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
| Theorem | axhv0cl-zf 30955 | Derive Axiom ax-hv0cl 30973 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
| Theorem | axhvaddid-zf 30956 | Derive Axiom ax-hvaddid 30974 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
| Theorem | axhfvmul-zf 30957 | Derive Axiom ax-hfvmul 30975 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
| Theorem | axhvmulid-zf 30958 | Derive Axiom ax-hvmulid 30976 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
| Theorem | axhvmulass-zf 30959 | Derive Axiom ax-hvmulass 30977 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | axhvdistr1-zf 30960 | Derive Axiom ax-hvdistr1 30978 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
| Theorem | axhvdistr2-zf 30961 | Derive Axiom ax-hvdistr2 30979 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | axhvmul0-zf 30962 | Derive Axiom ax-hvmul0 30980 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
| Theorem | axhfi-zf 30963 | Derive Axiom ax-hfi 31049 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
| Theorem | axhis1-zf 30964 | Derive Axiom ax-his1 31052 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
| Theorem | axhis2-zf 30965 | Derive Axiom ax-his2 31053 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
| Theorem | axhis3-zf 30966 | Derive Axiom ax-his3 31054 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
| Theorem | axhis4-zf 30967 | Derive Axiom ax-his4 31055 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
| Theorem | axhcompl-zf 30968* | Derive Axiom ax-hcompl 31172 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 30969, ax-hfvadd 30970, ax-hvcom 30971, ax-hvass 30972, ax-hv0cl 30973, ax-hvaddid 30974, ax-hfvmul 30975, ax-hvmulid 30976, ax-hvmulass 30977, ax-hvdistr1 30978, ax-hvdistr2 30979, ax-hvmul0 30980, ax-hfi 31049, ax-his1 31052, ax-his2 31053, ax-his3 31054, ax-his4 31055, and ax-hcompl 31172. The axioms specify the properties of 5 primitive symbols, ℋ, +ℎ, ·ℎ, 0ℎ, and ·ih. If we can prove in ZFC set theory that a class 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as Theorems axhilex-zf 30951, axhfvadd-zf 30952, axhvcom-zf 30953, axhvass-zf 30954, axhv0cl-zf 30955, axhvaddid-zf 30956, axhfvmul-zf 30957, axhvmulid-zf 30958, axhvmulass-zf 30959, axhvdistr1-zf 30960, axhvdistr2-zf 30961, axhvmul0-zf 30962, axhfi-zf 30963, axhis1-zf 30964, axhis2-zf 30965, axhis3-zf 30966, axhis4-zf 30967, and axhcompl-zf 30968 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 30951. | ||
| Axiom | ax-hilex 30969 | This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ ℋ ∈ V | ||
| Axiom | ax-hfvadd 30970 | Vector addition is an operation on ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Axiom | ax-hvcom 30971 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
| Axiom | ax-hvass 30972 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
| Axiom | ax-hv0cl 30973 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℎ ∈ ℋ | ||
| Axiom | ax-hvaddid 30974 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
| Axiom | ax-hfvmul 30975 | Scalar multiplication is an operation on ℂ and ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
| Axiom | ax-hvmulid 30976 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
| Axiom | ax-hvmulass 30977 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
| Axiom | ax-hvdistr1 30978 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
| Axiom | ax-hvdistr2 30979 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
| Axiom | ax-hvmul0 30980 | Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 30996 and hvsubval 30986). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
| Theorem | hvmulex 30981 | The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ ·ℎ ∈ V | ||
| Theorem | hvaddcl 30982 | Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | ||
| Theorem | hvmulcl 30983 | Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | ||
| Theorem | hvmulcli 30984 | Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ | ||
| Theorem | hvsubf 30985 | Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
| ⊢ −ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Theorem | hvsubval 30986 | Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | ||
| Theorem | hvsubcl 30987 | Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | ||
| Theorem | hvaddcli 30988 | Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ | ||
| Theorem | hvcomi 30989 | Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) | ||
| Theorem | hvsubvali 30990 | Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) | ||
| Theorem | hvsubcli 30991 | Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ | ||
| Theorem | ifhvhv0 30992 | Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | ||
| Theorem | hvaddlid 30993 | Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | ||
| Theorem | hvmul0 30994 | Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ·ℎ 0ℎ) = 0ℎ) | ||
| Theorem | hvmul0or 30995 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = 0ℎ ↔ (𝐴 = 0 ∨ 𝐵 = 0ℎ))) | ||
| Theorem | hvsubid 30996 | Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) | ||
| Theorem | hvnegid 30997 | Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ) | ||
| Theorem | hv2neg 30998 | Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴)) | ||
| Theorem | hvaddlidi 30999 | Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ +ℎ 𝐴) = 𝐴 | ||
| Theorem | hvnegidi 31000 | Addition of negative of a vector to itself. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |