| Metamath
Proof Explorer Theorem List (p. 310 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hlipf 30901 | Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
| Theorem | hlipcj 30902 | Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (∗‘(𝐵𝑃𝐴))) | ||
| Theorem | hlipdir 30903 | Distributive law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
| Theorem | hlipass 30904 | Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
| Theorem | hlipgt0 30905 | The inner product of a Hilbert space vector by itself is positive. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 0 < (𝐴𝑃𝐴)) | ||
| Theorem | hlcompl 30906 | Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
| Theorem | cnchl 30907 | The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
| Theorem | htthlem 30908* | Lemma for htth 30909. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = 〈𝑤 ∣ 𝑇(𝑧)〉 = 〈𝑇(𝑤) ∣ 𝑧〉 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 30846, so by the Uniform Boundedness theorem ubth 30864, there is a uniform bound 𝑦 on ∥ 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then ∣ 𝑇(𝑥) ∣ ↑2 = 〈𝑇(𝑥) ∣ 𝑇(𝑥)〉 = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦 ∣ 𝑇(𝑥) ∣, so ∣ 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ CHilOLD & ⊢ 𝑊 = 〈〈 + , · 〉, abs〉 & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) & ⊢ 𝐹 = (𝑧 ∈ 𝑋 ↦ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧)))) & ⊢ 𝐾 = (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
| Theorem | htth 30909* | Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵) | ||
This part contains the definitions and theorems used by the Hilbert Space Explorer (HSE), mmhil.html. Because it axiomatizes a single complex Hilbert space whose existence is assumed, its usefulness is limited. For example, it cannot work with real or quaternion Hilbert spaces and it cannot study relationships between two Hilbert spaces. More information can be found on the Hilbert Space Explorer page. Future development should instead work with general Hilbert spaces as defined by df-hil 21651; note that df-hil 21651 uses extensible structures. The intent is for this deprecated section to be deleted once all its theorems have been translated into extensible structure versions (or are not useful). Many of the theorems in this section have already been translated to extensible structure versions, but there is still a lot in this section that might be useful for future reference. It is much easier to translate these by hand from this section than to start from scratch from textbook proofs, since the HSE omits no details. | ||
| Syntax | chba 30910 | Extend class notation with Hilbert vector space. |
| class ℋ | ||
| Syntax | cva 30911 | Extend class notation with vector addition in Hilbert space. In the literature, the subscript "h" is omitted, but we need it to avoid ambiguity with complex number addition + caddc 11019. |
| class +ℎ | ||
| Syntax | csm 30912 | Extend class notation with scalar multiplication in Hilbert space. In the literature scalar multiplication is usually indicated by juxtaposition, but we need an explicit symbol to prevent ambiguity. |
| class ·ℎ | ||
| Syntax | csp 30913 | Extend class notation with inner (scalar) product in Hilbert space. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉 but our operation notation allows to use existing theorems about operations and also eliminates ambiguity with the definition of an ordered pair df-op 4584. |
| class ·ih | ||
| Syntax | cno 30914 | Extend class notation with the norm function in Hilbert space. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. |
| class normℎ | ||
| Syntax | c0v 30915 | Extend class notation with zero vector in Hilbert space. |
| class 0ℎ | ||
| Syntax | cmv 30916 | Extend class notation with vector subtraction in Hilbert space. |
| class −ℎ | ||
| Syntax | ccauold 30917 | Extend class notation with set of Cauchy sequences in Hilbert space. |
| class Cauchy | ||
| Syntax | chli 30918 | Extend class notation with convergence relation in Hilbert space. |
| class ⇝𝑣 | ||
| Syntax | csh 30919 | Extend class notation with set of subspaces of a Hilbert space. |
| class Sℋ | ||
| Syntax | cch 30920 | Extend class notation with set of closed subspaces of a Hilbert space. |
| class Cℋ | ||
| Syntax | cort 30921 | Extend class notation with orthogonal complement in Cℋ. |
| class ⊥ | ||
| Syntax | cph 30922 | Extend class notation with subspace sum in Cℋ. |
| class +ℋ | ||
| Syntax | cspn 30923 | Extend class notation with subspace span in Cℋ. |
| class span | ||
| Syntax | chj 30924 | Extend class notation with join in Cℋ. |
| class ∨ℋ | ||
| Syntax | chsup 30925 | Extend class notation with supremum of a collection in Cℋ. |
| class ∨ℋ | ||
| Syntax | c0h 30926 | Extend class notation with zero of Cℋ. |
| class 0ℋ | ||
| Syntax | ccm 30927 | Extend class notation with the commutes relation on a Hilbert lattice. |
| class 𝐶ℋ | ||
| Syntax | cpjh 30928 | Extend class notation with set of projections on a Hilbert space. |
| class projℎ | ||
| Syntax | chos 30929 | Extend class notation with sum of Hilbert space operators. |
| class +op | ||
| Syntax | chot 30930 | Extend class notation with scalar product of a Hilbert space operator. |
| class ·op | ||
| Syntax | chod 30931 | Extend class notation with difference of Hilbert space operators. |
| class −op | ||
| Syntax | chfs 30932 | Extend class notation with sum of Hilbert space functionals. |
| class +fn | ||
| Syntax | chft 30933 | Extend class notation with scalar product of Hilbert space functional. |
| class ·fn | ||
| Syntax | ch0o 30934 | Extend class notation with the Hilbert space zero operator. |
| class 0hop | ||
| Syntax | chio 30935 | Extend class notation with Hilbert space identity operator. |
| class Iop | ||
| Syntax | cnop 30936 | Extend class notation with the operator norm function. |
| class normop | ||
| Syntax | ccop 30937 | Extend class notation with set of continuous Hilbert space operators. |
| class ContOp | ||
| Syntax | clo 30938 | Extend class notation with set of linear Hilbert space operators. |
| class LinOp | ||
| Syntax | cbo 30939 | Extend class notation with set of bounded linear operators. |
| class BndLinOp | ||
| Syntax | cuo 30940 | Extend class notation with set of unitary Hilbert space operators. |
| class UniOp | ||
| Syntax | cho 30941 | Extend class notation with set of Hermitian Hilbert space operators. |
| class HrmOp | ||
| Syntax | cnmf 30942 | Extend class notation with the functional norm function. |
| class normfn | ||
| Syntax | cnl 30943 | Extend class notation with the functional nullspace function. |
| class null | ||
| Syntax | ccnfn 30944 | Extend class notation with set of continuous Hilbert space functionals. |
| class ContFn | ||
| Syntax | clf 30945 | Extend class notation with set of linear Hilbert space functionals. |
| class LinFn | ||
| Syntax | cado 30946 | Extend class notation with Hilbert space adjoint function. |
| class adjℎ | ||
| Syntax | cbr 30947 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
| class bra | ||
| Syntax | ck 30948 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
| class ketbra | ||
| Syntax | cleo 30949 | Extend class notation with positive operator ordering. |
| class ≤op | ||
| Syntax | cei 30950 | Extend class notation with Hilbert space eigenvector function. |
| class eigvec | ||
| Syntax | cel 30951 | Extend class notation with Hilbert space eigenvalue function. |
| class eigval | ||
| Syntax | cspc 30952 | Extend class notation with the spectrum of an operator. |
| class Lambda | ||
| Syntax | cst 30953 | Extend class notation with set of states on a Hilbert lattice. |
| class States | ||
| Syntax | chst 30954 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
| class CHStates | ||
| Syntax | ccv 30955 | Extend class notation with the covers relation on a Hilbert lattice. |
| class ⋖ℋ | ||
| Syntax | cat 30956 | Extend class notation with set of atoms on a Hilbert lattice. |
| class HAtoms | ||
| Syntax | cmd 30957 | Extend class notation with the modular pair relation on a Hilbert lattice. |
| class 𝑀ℋ | ||
| Syntax | cdmd 30958 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
| class 𝑀ℋ* | ||
| Definition | df-hnorm 30959 | Define the function for the norm of a vector of Hilbert space. See normval 31115 for its value and normcl 31116 for its closure. Theorems norm-i-i 31124, norm-ii-i 31128, and norm-iii-i 31130 show it has the expected properties of a norm. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | ||
| Definition | df-hba 30960 | Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30990). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31158. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
| Definition | df-h0v 30961 | Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31159. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
| Definition | df-hvsub 30962* | Define vector subtraction. See hvsubvali 31011 for its value and hvsubcli 31012 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | ||
| Definition | df-hlim 30963* | Define the limit relation for Hilbert space. See hlimi 31179 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | ||
| Definition | df-hcau 30964* | Define the set of Cauchy sequences on a Hilbert space. See hcau 31175 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | ||
| Theorem | h2hva 30965 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
| Theorem | h2hsm 30966 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | h2hnm 30967 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
| Theorem | h2hvs 30968 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
| Theorem | h2hmetdval 30969 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | h2hcau 30970 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
| Theorem | h2hlm 30971 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 30972 through axhcompl-zf 30989, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 30959 above. See also the comment in ax-hilex 30990. | ||
| Theorem | axhilex-zf 30972 | Derive Axiom ax-hilex 30990 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
| Theorem | axhfvadd-zf 30973 | Derive Axiom ax-hfvadd 30991 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Theorem | axhvcom-zf 30974 | Derive Axiom ax-hvcom 30992 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
| Theorem | axhvass-zf 30975 | Derive Axiom ax-hvass 30993 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
| Theorem | axhv0cl-zf 30976 | Derive Axiom ax-hv0cl 30994 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
| Theorem | axhvaddid-zf 30977 | Derive Axiom ax-hvaddid 30995 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
| Theorem | axhfvmul-zf 30978 | Derive Axiom ax-hfvmul 30996 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
| Theorem | axhvmulid-zf 30979 | Derive Axiom ax-hvmulid 30997 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
| Theorem | axhvmulass-zf 30980 | Derive Axiom ax-hvmulass 30998 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | axhvdistr1-zf 30981 | Derive Axiom ax-hvdistr1 30999 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
| Theorem | axhvdistr2-zf 30982 | Derive Axiom ax-hvdistr2 31000 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | axhvmul0-zf 30983 | Derive Axiom ax-hvmul0 31001 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
| Theorem | axhfi-zf 30984 | Derive Axiom ax-hfi 31070 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
| Theorem | axhis1-zf 30985 | Derive Axiom ax-his1 31073 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
| Theorem | axhis2-zf 30986 | Derive Axiom ax-his2 31074 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
| Theorem | axhis3-zf 30987 | Derive Axiom ax-his3 31075 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
| Theorem | axhis4-zf 30988 | Derive Axiom ax-his4 31076 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
| Theorem | axhcompl-zf 30989* | Derive Axiom ax-hcompl 31193 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 30990, ax-hfvadd 30991, ax-hvcom 30992, ax-hvass 30993, ax-hv0cl 30994, ax-hvaddid 30995, ax-hfvmul 30996, ax-hvmulid 30997, ax-hvmulass 30998, ax-hvdistr1 30999, ax-hvdistr2 31000, ax-hvmul0 31001, ax-hfi 31070, ax-his1 31073, ax-his2 31074, ax-his3 31075, ax-his4 31076, and ax-hcompl 31193. The axioms specify the properties of 5 primitive symbols, ℋ, +ℎ, ·ℎ, 0ℎ, and ·ih. If we can prove in ZFC set theory that a class 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as Theorems axhilex-zf 30972, axhfvadd-zf 30973, axhvcom-zf 30974, axhvass-zf 30975, axhv0cl-zf 30976, axhvaddid-zf 30977, axhfvmul-zf 30978, axhvmulid-zf 30979, axhvmulass-zf 30980, axhvdistr1-zf 30981, axhvdistr2-zf 30982, axhvmul0-zf 30983, axhfi-zf 30984, axhis1-zf 30985, axhis2-zf 30986, axhis3-zf 30987, axhis4-zf 30988, and axhcompl-zf 30989 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 30972. | ||
| Axiom | ax-hilex 30990 | This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ ℋ ∈ V | ||
| Axiom | ax-hfvadd 30991 | Vector addition is an operation on ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Axiom | ax-hvcom 30992 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
| Axiom | ax-hvass 30993 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
| Axiom | ax-hv0cl 30994 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℎ ∈ ℋ | ||
| Axiom | ax-hvaddid 30995 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
| Axiom | ax-hfvmul 30996 | Scalar multiplication is an operation on ℂ and ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
| Axiom | ax-hvmulid 30997 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
| Axiom | ax-hvmulass 30998 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
| Axiom | ax-hvdistr1 30999 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
| Axiom | ax-hvdistr2 31000 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |