| Metamath
Proof Explorer Theorem List (p. 310 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | h2hva 30901 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
| Theorem | h2hsm 30902 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | h2hnm 30903 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
| Theorem | h2hvs 30904 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
| Theorem | h2hmetdval 30905 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | h2hcau 30906 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
| Theorem | h2hlm 30907 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 30908 through axhcompl-zf 30925, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 30895 above. See also the comment in ax-hilex 30926. | ||
| Theorem | axhilex-zf 30908 | Derive Axiom ax-hilex 30926 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
| Theorem | axhfvadd-zf 30909 | Derive Axiom ax-hfvadd 30927 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Theorem | axhvcom-zf 30910 | Derive Axiom ax-hvcom 30928 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
| Theorem | axhvass-zf 30911 | Derive Axiom ax-hvass 30929 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
| Theorem | axhv0cl-zf 30912 | Derive Axiom ax-hv0cl 30930 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
| Theorem | axhvaddid-zf 30913 | Derive Axiom ax-hvaddid 30931 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
| Theorem | axhfvmul-zf 30914 | Derive Axiom ax-hfvmul 30932 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
| Theorem | axhvmulid-zf 30915 | Derive Axiom ax-hvmulid 30933 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
| Theorem | axhvmulass-zf 30916 | Derive Axiom ax-hvmulass 30934 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | axhvdistr1-zf 30917 | Derive Axiom ax-hvdistr1 30935 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
| Theorem | axhvdistr2-zf 30918 | Derive Axiom ax-hvdistr2 30936 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | axhvmul0-zf 30919 | Derive Axiom ax-hvmul0 30937 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
| Theorem | axhfi-zf 30920 | Derive Axiom ax-hfi 31006 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
| Theorem | axhis1-zf 30921 | Derive Axiom ax-his1 31009 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
| Theorem | axhis2-zf 30922 | Derive Axiom ax-his2 31010 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
| Theorem | axhis3-zf 30923 | Derive Axiom ax-his3 31011 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
| Theorem | axhis4-zf 30924 | Derive Axiom ax-his4 31012 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
| Theorem | axhcompl-zf 30925* | Derive Axiom ax-hcompl 31129 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 30926, ax-hfvadd 30927, ax-hvcom 30928, ax-hvass 30929, ax-hv0cl 30930, ax-hvaddid 30931, ax-hfvmul 30932, ax-hvmulid 30933, ax-hvmulass 30934, ax-hvdistr1 30935, ax-hvdistr2 30936, ax-hvmul0 30937, ax-hfi 31006, ax-his1 31009, ax-his2 31010, ax-his3 31011, ax-his4 31012, and ax-hcompl 31129. The axioms specify the properties of 5 primitive symbols, ℋ, +ℎ, ·ℎ, 0ℎ, and ·ih. If we can prove in ZFC set theory that a class 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as Theorems axhilex-zf 30908, axhfvadd-zf 30909, axhvcom-zf 30910, axhvass-zf 30911, axhv0cl-zf 30912, axhvaddid-zf 30913, axhfvmul-zf 30914, axhvmulid-zf 30915, axhvmulass-zf 30916, axhvdistr1-zf 30917, axhvdistr2-zf 30918, axhvmul0-zf 30919, axhfi-zf 30920, axhis1-zf 30921, axhis2-zf 30922, axhis3-zf 30923, axhis4-zf 30924, and axhcompl-zf 30925 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 30908. | ||
| Axiom | ax-hilex 30926 | This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ ℋ ∈ V | ||
| Axiom | ax-hfvadd 30927 | Vector addition is an operation on ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Axiom | ax-hvcom 30928 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
| Axiom | ax-hvass 30929 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
| Axiom | ax-hv0cl 30930 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℎ ∈ ℋ | ||
| Axiom | ax-hvaddid 30931 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
| Axiom | ax-hfvmul 30932 | Scalar multiplication is an operation on ℂ and ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
| Axiom | ax-hvmulid 30933 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
| Axiom | ax-hvmulass 30934 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
| Axiom | ax-hvdistr1 30935 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
| Axiom | ax-hvdistr2 30936 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
| Axiom | ax-hvmul0 30937 | Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 30953 and hvsubval 30943). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
| Theorem | hvmulex 30938 | The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ ·ℎ ∈ V | ||
| Theorem | hvaddcl 30939 | Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | ||
| Theorem | hvmulcl 30940 | Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | ||
| Theorem | hvmulcli 30941 | Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ | ||
| Theorem | hvsubf 30942 | Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
| ⊢ −ℎ :( ℋ × ℋ)⟶ ℋ | ||
| Theorem | hvsubval 30943 | Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | ||
| Theorem | hvsubcl 30944 | Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | ||
| Theorem | hvaddcli 30945 | Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ | ||
| Theorem | hvcomi 30946 | Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) | ||
| Theorem | hvsubvali 30947 | Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) | ||
| Theorem | hvsubcli 30948 | Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ | ||
| Theorem | ifhvhv0 30949 | Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | ||
| Theorem | hvaddlid 30950 | Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | ||
| Theorem | hvmul0 30951 | Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ·ℎ 0ℎ) = 0ℎ) | ||
| Theorem | hvmul0or 30952 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = 0ℎ ↔ (𝐴 = 0 ∨ 𝐵 = 0ℎ))) | ||
| Theorem | hvsubid 30953 | Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) | ||
| Theorem | hvnegid 30954 | Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ) | ||
| Theorem | hv2neg 30955 | Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴)) | ||
| Theorem | hvaddlidi 30956 | Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ +ℎ 𝐴) = 𝐴 | ||
| Theorem | hvnegidi 30957 | Addition of negative of a vector to itself. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ | ||
| Theorem | hv2negi 30958 | Two ways to express the negative of a vector. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴) | ||
| Theorem | hvm1neg 30959 | Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 ·ℎ 𝐵)) = (-𝐴 ·ℎ 𝐵)) | ||
| Theorem | hvaddsubval 30960 | Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) | ||
| Theorem | hvadd32 30961 | Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | ||
| Theorem | hvadd12 30962 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶))) | ||
| Theorem | hvadd4 30963 | Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | ||
| Theorem | hvsub4 30964 | Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) −ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) +ℎ (𝐵 −ℎ 𝐷))) | ||
| Theorem | hvaddsub12 30965 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 −ℎ 𝐶))) | ||
| Theorem | hvpncan 30966 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) | ||
| Theorem | hvpncan2 30967 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐴) = 𝐵) | ||
| Theorem | hvaddsubass 30968 | Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐶) = (𝐴 +ℎ (𝐵 −ℎ 𝐶))) | ||
| Theorem | hvpncan3 30969 | Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐴)) = 𝐵) | ||
| Theorem | hvmulcom 30970 | Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) | ||
| Theorem | hvsubass 30971 | Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) | ||
| Theorem | hvsub32 30972 | Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 −ℎ 𝐶) −ℎ 𝐵)) | ||
| Theorem | hvmulassi 30973 | Scalar multiplication associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) | ||
| Theorem | hvmulcomi 30974 | Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) | ||
| Theorem | hvmul2negi 30975 | Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (-𝐴 ·ℎ (-𝐵 ·ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) | ||
| Theorem | hvsubdistr1 30976 | Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | ||
| Theorem | hvsubdistr2 30977 | Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | ||
| Theorem | hvdistr1i 30978 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) | ||
| Theorem | hvsubdistr1i 30979 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) | ||
| Theorem | hvassi 30980 | Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) | ||
| Theorem | hvadd32i 30981 | Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵) | ||
| Theorem | hvsubassi 30982 | Hilbert vector space associative law for subtraction. (Contributed by NM, 7-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶)) | ||
| Theorem | hvsub32i 30983 | Hilbert vector space commutative/associative law. (Contributed by NM, 7-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 −ℎ 𝐶) −ℎ 𝐵) | ||
| Theorem | hvadd12i 30984 | Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) | ||
| Theorem | hvadd4i 30985 | Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷)) | ||
| Theorem | hvsubsub4i 30986 | Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) | ||
| Theorem | hvsubsub4 30987 | Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷))) | ||
| Theorem | hv2times 30988 | Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) | ||
| Theorem | hvnegdii 30989 | Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) | ||
| Theorem | hvsubeq0i 30990 | If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵) | ||
| Theorem | hvsubcan2i 30991 | Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) | ||
| Theorem | hvaddcani 30992 | Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶) | ||
| Theorem | hvsubaddi 30993 | Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) | ||
| Theorem | hvnegdi 30994 | Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴)) | ||
| Theorem | hvsubeq0 30995 | If the difference between two vectors is zero, they are equal. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) | ||
| Theorem | hvaddeq0 30996 | If the sum of two vectors is zero, one is the negative of the other. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = 0ℎ ↔ 𝐴 = (-1 ·ℎ 𝐵))) | ||
| Theorem | hvaddcan 30997 | Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | hvaddcan2 30998 | Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐶) = (𝐵 +ℎ 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | hvmulcan 30999 | Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | hvmulcan2 31000 | Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |