HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhtheu Structured version   Visualization version   GIF version

Theorem pjhtheu 28730
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 28752 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhtheu ((𝐻C𝐴 ∈ ℋ) → ∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐻,𝑦

Proof of Theorem pjhtheu
StepHypRef Expression
1 pjhth 28729 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) = ℋ)
21eleq2d 2830 . . . 4 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ 𝐴 ∈ ℋ))
3 chsh 28558 . . . . 5 (𝐻C𝐻S )
4 shocsh 28620 . . . . . 6 (𝐻S → (⊥‘𝐻) ∈ S )
53, 4syl 17 . . . . 5 (𝐻C → (⊥‘𝐻) ∈ S )
6 shsel 28650 . . . . 5 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
73, 5, 6syl2anc 579 . . . 4 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
82, 7bitr3d 272 . . 3 (𝐻C → (𝐴 ∈ ℋ ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
98biimpa 468 . 2 ((𝐻C𝐴 ∈ ℋ) → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
10 ocin 28632 . . . . 5 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
113, 10syl 17 . . . 4 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
12 pjhthmo 28638 . . . 4 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
133, 5, 11, 12syl3anc 1490 . . 3 (𝐻C → ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
1413adantr 472 . 2 ((𝐻C𝐴 ∈ ℋ) → ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
15 reu5 3307 . . 3 (∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ↔ (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
16 df-rmo 3063 . . . 4 (∃*𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ↔ ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
1716anbi2i 616 . . 3 ((∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)) ↔ (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1815, 17bitri 266 . 2 (∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ↔ (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
199, 14, 18sylanbrc 578 1 ((𝐻C𝐴 ∈ ℋ) → ∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  ∃*wmo 2563  wrex 3056  ∃!wreu 3057  ∃*wrmo 3058  cin 3733  cfv 6070  (class class class)co 6846  chba 28253   + cva 28254   S csh 28262   C cch 28263  cort 28264   + cph 28265  0c0h 28269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cc 9514  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273  ax-hilex 28333  ax-hfvadd 28334  ax-hvcom 28335  ax-hvass 28336  ax-hv0cl 28337  ax-hvaddid 28338  ax-hfvmul 28339  ax-hvmulid 28340  ax-hvmulass 28341  ax-hvdistr1 28342  ax-hvdistr2 28343  ax-hvmul0 28344  ax-hfi 28413  ax-his1 28416  ax-his2 28417  ax-his3 28418  ax-his4 28419  ax-hcompl 28536
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-omul 7773  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-acn 9023  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-n0 11543  df-z 11629  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ico 12388  df-icc 12389  df-fz 12539  df-fl 12806  df-seq 13014  df-exp 13073  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-rlim 14519  df-rest 16363  df-topgen 16384  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-top 20992  df-topon 21009  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lm 21327  df-haus 21413  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-cfil 23346  df-cau 23347  df-cmet 23348  df-grpo 27825  df-gid 27826  df-ginv 27827  df-gdiv 27828  df-ablo 27877  df-vc 27891  df-nv 27924  df-va 27927  df-ba 27928  df-sm 27929  df-0v 27930  df-vs 27931  df-nmcv 27932  df-ims 27933  df-ssp 28054  df-ph 28145  df-cbn 28196  df-hnorm 28302  df-hba 28303  df-hvsub 28305  df-hlim 28306  df-hcau 28307  df-sh 28541  df-ch 28555  df-oc 28586  df-ch0 28587  df-shs 28644
This theorem is referenced by:  pjhtheu2  28752
  Copyright terms: Public domain W3C validator