![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhtheu | Structured version Visualization version GIF version |
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 31200 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhtheu | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth 31177 | . . . . 5 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | |
2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ 𝐴 ∈ ℋ)) |
3 | chsh 31008 | . . . . 5 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
4 | shocsh 31068 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
5 | shsel 31098 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
6 | 3, 4, 5 | syl2anc2 584 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
7 | 2, 6 | bitr3d 281 | . . 3 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ ℋ ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
8 | 7 | biimpa 476 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
9 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (⊥‘𝐻) ∈ Sℋ ) |
10 | ocin 31080 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
11 | 3, 10 | syl 17 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) |
12 | pjhthmo 31086 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ∧ (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) → ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
13 | 3, 9, 11, 12 | syl3anc 1369 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
15 | reu5 3373 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ↔ (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
16 | df-rmo 3371 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ↔ ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
17 | 16 | anbi2i 622 | . . 3 ⊢ ((∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) ↔ (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
18 | 15, 17 | bitri 275 | . 2 ⊢ (∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ↔ (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
19 | 8, 14, 18 | sylanbrc 582 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃*wmo 2527 ∃wrex 3065 ∃!wreu 3369 ∃*wrmo 3370 ∩ cin 3943 ‘cfv 6542 (class class class)co 7414 ℋchba 30703 +ℎ cva 30704 Sℋ csh 30712 Cℋ cch 30713 ⊥cort 30714 +ℋ cph 30715 0ℋc0h 30719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cc 10444 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 ax-mulf 11204 ax-hilex 30783 ax-hfvadd 30784 ax-hvcom 30785 ax-hvass 30786 ax-hv0cl 30787 ax-hvaddid 30788 ax-hfvmul 30789 ax-hvmulid 30790 ax-hvmulass 30791 ax-hvdistr1 30792 ax-hvdistr2 30793 ax-hvmul0 30794 ax-hfi 30863 ax-his1 30866 ax-his2 30867 ax-his3 30868 ax-his4 30869 ax-hcompl 30986 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8716 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fi 9420 df-sup 9451 df-inf 9452 df-oi 9519 df-card 9948 df-acn 9951 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-ico 13348 df-icc 13349 df-fz 13503 df-fl 13775 df-seq 13985 df-exp 14045 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-rlim 15451 df-rest 17389 df-topgen 17410 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-fbas 21256 df-fg 21257 df-top 22770 df-topon 22787 df-bases 22823 df-cld 22897 df-ntr 22898 df-cls 22899 df-nei 22976 df-lm 23107 df-haus 23193 df-fil 23724 df-fm 23816 df-flim 23817 df-flf 23818 df-cfil 25157 df-cau 25158 df-cmet 25159 df-grpo 30277 df-gid 30278 df-ginv 30279 df-gdiv 30280 df-ablo 30329 df-vc 30343 df-nv 30376 df-va 30379 df-ba 30380 df-sm 30381 df-0v 30382 df-vs 30383 df-nmcv 30384 df-ims 30385 df-ssp 30506 df-ph 30597 df-cbn 30647 df-hnorm 30752 df-hba 30753 df-hvsub 30755 df-hlim 30756 df-hcau 30757 df-sh 30991 df-ch 31005 df-oc 31036 df-ch0 31037 df-shs 31092 |
This theorem is referenced by: pjhtheu2 31200 |
Copyright terms: Public domain | W3C validator |