![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhfval | Structured version Visualization version GIF version |
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhfval | ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
2 | fveq2 6891 | . . . . 5 ⊢ (ℎ = 𝐻 → (⊥‘ℎ) = (⊥‘𝐻)) | |
3 | 2 | rexeqdv 3326 | . . . 4 ⊢ (ℎ = 𝐻 → (∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) |
4 | 1, 3 | riotaeqbidv 7367 | . . 3 ⊢ (ℎ = 𝐻 → (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)) = (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) |
5 | 4 | mpteq2dv 5250 | . 2 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
6 | df-pjh 30643 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
7 | ax-hilex 30247 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 7224 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
9 | 5, 6, 8 | fvmpt 6998 | 1 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ↦ cmpt 5231 ‘cfv 6543 ℩crio 7363 (class class class)co 7408 ℋchba 30167 +ℎ cva 30168 Cℋ cch 30177 ⊥cort 30178 projℎcpjh 30185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-hilex 30247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-pjh 30643 |
This theorem is referenced by: pjhval 30645 pjfni 30949 |
Copyright terms: Public domain | W3C validator |