![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhfval | Structured version Visualization version GIF version |
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhfval | ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
2 | fveq2 6920 | . . . . 5 ⊢ (ℎ = 𝐻 → (⊥‘ℎ) = (⊥‘𝐻)) | |
3 | 2 | rexeqdv 3335 | . . . 4 ⊢ (ℎ = 𝐻 → (∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) |
4 | 1, 3 | riotaeqbidv 7407 | . . 3 ⊢ (ℎ = 𝐻 → (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)) = (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) |
5 | 4 | mpteq2dv 5268 | . 2 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
6 | df-pjh 31427 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
7 | ax-hilex 31031 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 7260 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
9 | 5, 6, 8 | fvmpt 7029 | 1 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 ℋchba 30951 +ℎ cva 30952 Cℋ cch 30961 ⊥cort 30962 projℎcpjh 30969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-pjh 31427 |
This theorem is referenced by: pjhval 31429 pjfni 31733 |
Copyright terms: Public domain | W3C validator |