![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhfval | Structured version Visualization version GIF version |
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhfval | ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
2 | fveq2 6884 | . . . . 5 ⊢ (ℎ = 𝐻 → (⊥‘ℎ) = (⊥‘𝐻)) | |
3 | 2 | rexeqdv 3320 | . . . 4 ⊢ (ℎ = 𝐻 → (∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) |
4 | 1, 3 | riotaeqbidv 7363 | . . 3 ⊢ (ℎ = 𝐻 → (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)) = (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) |
5 | 4 | mpteq2dv 5243 | . 2 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
6 | df-pjh 31152 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
7 | ax-hilex 30756 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 7219 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
9 | 5, 6, 8 | fvmpt 6991 | 1 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ↦ cmpt 5224 ‘cfv 6536 ℩crio 7359 (class class class)co 7404 ℋchba 30676 +ℎ cva 30677 Cℋ cch 30686 ⊥cort 30687 projℎcpjh 30694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-hilex 30756 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-pjh 31152 |
This theorem is referenced by: pjhval 31154 pjfni 31458 |
Copyright terms: Public domain | W3C validator |