HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhfval Structured version   Visualization version   GIF version

Theorem pjhfval 31416
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjhfval (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝐻

Proof of Theorem pjhfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 ( = 𝐻 = 𝐻)
2 fveq2 6905 . . . . 5 ( = 𝐻 → (⊥‘) = (⊥‘𝐻))
32rexeqdv 3326 . . . 4 ( = 𝐻 → (∃𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦)))
41, 3riotaeqbidv 7392 . . 3 ( = 𝐻 → (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦)) = (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦)))
54mpteq2dv 5243 . 2 ( = 𝐻 → (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
6 df-pjh 31415 . 2 proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
7 ax-hilex 31019 . . 3 ℋ ∈ V
87mptex 7244 . 2 (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))) ∈ V
95, 6, 8fvmpt 7015 1 (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wrex 3069  cmpt 5224  cfv 6560  crio 7388  (class class class)co 7432  chba 30939   + cva 30940   C cch 30949  cort 30950  projcpjh 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-hilex 31019
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-pjh 31415
This theorem is referenced by:  pjhval  31417  pjfni  31721
  Copyright terms: Public domain W3C validator