HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhfval Structured version   Visualization version   GIF version

Theorem pjhfval 31226
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjhfval (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝐻

Proof of Theorem pjhfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 ( = 𝐻 = 𝐻)
2 fveq2 6902 . . . . 5 ( = 𝐻 → (⊥‘) = (⊥‘𝐻))
32rexeqdv 3324 . . . 4 ( = 𝐻 → (∃𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦)))
41, 3riotaeqbidv 7385 . . 3 ( = 𝐻 → (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦)) = (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦)))
54mpteq2dv 5254 . 2 ( = 𝐻 → (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
6 df-pjh 31225 . 2 proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
7 ax-hilex 30829 . . 3 ℋ ∈ V
87mptex 7241 . 2 (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))) ∈ V
95, 6, 8fvmpt 7010 1 (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wrex 3067  cmpt 5235  cfv 6553  crio 7381  (class class class)co 7426  chba 30749   + cva 30750   C cch 30759  cort 30760  projcpjh 30767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-hilex 30829
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-pjh 31225
This theorem is referenced by:  pjhval  31227  pjfni  31531
  Copyright terms: Public domain W3C validator