HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhfval Structured version   Visualization version   GIF version

Theorem pjhfval 31428
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjhfval (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝐻

Proof of Theorem pjhfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 ( = 𝐻 = 𝐻)
2 fveq2 6920 . . . . 5 ( = 𝐻 → (⊥‘) = (⊥‘𝐻))
32rexeqdv 3335 . . . 4 ( = 𝐻 → (∃𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦)))
41, 3riotaeqbidv 7407 . . 3 ( = 𝐻 → (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦)) = (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦)))
54mpteq2dv 5268 . 2 ( = 𝐻 → (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
6 df-pjh 31427 . 2 proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
7 ax-hilex 31031 . . 3 ℋ ∈ V
87mptex 7260 . 2 (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))) ∈ V
95, 6, 8fvmpt 7029 1 (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑧𝐻𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  chba 30951   + cva 30952   C cch 30961  cort 30962  projcpjh 30969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-pjh 31427
This theorem is referenced by:  pjhval  31429  pjfni  31733
  Copyright terms: Public domain W3C validator