| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjmfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjmfn | ⊢ projℎ Fn Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30901 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | mptex 7179 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
| 3 | df-pjh 31297 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
| 4 | 2, 3 | fnmpti 6643 | 1 ⊢ projℎ Fn Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wrex 3053 ↦ cmpt 5183 Fn wfn 6494 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 ℋchba 30821 +ℎ cva 30822 Cℋ cch 30831 ⊥cort 30832 projℎcpjh 30839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-pjh 31297 |
| This theorem is referenced by: pjmf1 31618 pjssdif1i 32077 dfpjop 32084 pjadj3 32090 pjcmul1i 32103 pjcmul2i 32104 |
| Copyright terms: Public domain | W3C validator |