Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjmfn | Structured version Visualization version GIF version |
Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjmfn | ⊢ projℎ Fn Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 29590 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | mptex 7149 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
3 | df-pjh 29986 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
4 | 2, 3 | fnmpti 6621 | 1 ⊢ projℎ Fn Cℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∃wrex 3070 ↦ cmpt 5172 Fn wfn 6468 ‘cfv 6473 ℩crio 7285 (class class class)co 7329 ℋchba 29510 +ℎ cva 29511 Cℋ cch 29520 ⊥cort 29521 projℎcpjh 29528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-hilex 29590 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-pjh 29986 |
This theorem is referenced by: pjmf1 30307 pjssdif1i 30766 dfpjop 30773 pjadj3 30779 pjcmul1i 30792 pjcmul2i 30793 |
Copyright terms: Public domain | W3C validator |