| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjmfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjmfn | ⊢ projℎ Fn Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30935 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | mptex 7204 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
| 3 | df-pjh 31331 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
| 4 | 2, 3 | fnmpti 6669 | 1 ⊢ projℎ Fn Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wrex 3055 ↦ cmpt 5196 Fn wfn 6514 ‘cfv 6519 ℩crio 7350 (class class class)co 7394 ℋchba 30855 +ℎ cva 30856 Cℋ cch 30865 ⊥cort 30866 projℎcpjh 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-pjh 31331 |
| This theorem is referenced by: pjmf1 31652 pjssdif1i 32111 dfpjop 32118 pjadj3 32124 pjcmul1i 32137 pjcmul2i 32138 |
| Copyright terms: Public domain | W3C validator |