![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjmfn | Structured version Visualization version GIF version |
Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjmfn | ⊢ projℎ Fn Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 30886 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | mptex 7235 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
3 | df-pjh 31282 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
4 | 2, 3 | fnmpti 6699 | 1 ⊢ projℎ Fn Cℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wrex 3059 ↦ cmpt 5232 Fn wfn 6544 ‘cfv 6549 ℩crio 7374 (class class class)co 7419 ℋchba 30806 +ℎ cva 30807 Cℋ cch 30816 ⊥cort 30817 projℎcpjh 30824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-hilex 30886 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-pjh 31282 |
This theorem is referenced by: pjmf1 31603 pjssdif1i 32062 dfpjop 32069 pjadj3 32075 pjcmul1i 32088 pjcmul2i 32089 |
Copyright terms: Public domain | W3C validator |