HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjmfn Structured version   Visualization version   GIF version

Theorem pjmfn 31659
Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
pjmfn proj Fn C

Proof of Theorem pjmfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30943 . . 3 ℋ ∈ V
21mptex 7159 . 2 (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))) ∈ V
3 df-pjh 31339 . 2 proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
42, 3fnmpti 6625 1 proj Fn C
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wrex 3053  cmpt 5173   Fn wfn 6477  cfv 6482  crio 7305  (class class class)co 7349  chba 30863   + cva 30864   C cch 30873  cort 30874  projcpjh 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-pjh 31339
This theorem is referenced by:  pjmf1  31660  pjssdif1i  32119  dfpjop  32126  pjadj3  32132  pjcmul1i  32145  pjcmul2i  32146
  Copyright terms: Public domain W3C validator