| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjmfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjmfn | ⊢ projℎ Fn Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30945 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | mptex 7224 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦))) ∈ V |
| 3 | df-pjh 31341 | . 2 ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | |
| 4 | 2, 3 | fnmpti 6690 | 1 ⊢ projℎ Fn Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∃wrex 3059 ↦ cmpt 5205 Fn wfn 6535 ‘cfv 6540 ℩crio 7368 (class class class)co 7412 ℋchba 30865 +ℎ cva 30866 Cℋ cch 30875 ⊥cort 30876 projℎcpjh 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-hilex 30945 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-pjh 31341 |
| This theorem is referenced by: pjmf1 31662 pjssdif1i 32121 dfpjop 32128 pjadj3 32134 pjcmul1i 32147 pjcmul2i 32148 |
| Copyright terms: Public domain | W3C validator |