Step | Hyp | Ref
| Expression |
1 | | cmu 26833 |
. 2
class
ΞΌ |
2 | | vx |
. . 3
setvar π₯ |
3 | | cn 12218 |
. . 3
class
β |
4 | | vp |
. . . . . . . 8
setvar π |
5 | 4 | cv 1538 |
. . . . . . 7
class π |
6 | | c2 12273 |
. . . . . . 7
class
2 |
7 | | cexp 14033 |
. . . . . . 7
class
β |
8 | 5, 6, 7 | co 7413 |
. . . . . 6
class (πβ2) |
9 | 2 | cv 1538 |
. . . . . 6
class π₯ |
10 | | cdvds 16203 |
. . . . . 6
class
β₯ |
11 | 8, 9, 10 | wbr 5149 |
. . . . 5
wff (πβ2) β₯ π₯ |
12 | | cprime 16614 |
. . . . 5
class
β |
13 | 11, 4, 12 | wrex 3068 |
. . . 4
wff
βπ β
β (πβ2) β₯
π₯ |
14 | | cc0 11114 |
. . . 4
class
0 |
15 | | c1 11115 |
. . . . . 6
class
1 |
16 | 15 | cneg 11451 |
. . . . 5
class
-1 |
17 | 5, 9, 10 | wbr 5149 |
. . . . . . 7
wff π β₯ π₯ |
18 | 17, 4, 12 | crab 3430 |
. . . . . 6
class {π β β β£ π β₯ π₯} |
19 | | chash 14296 |
. . . . . 6
class
β― |
20 | 18, 19 | cfv 6544 |
. . . . 5
class
(β―β{π
β β β£ π
β₯ π₯}) |
21 | 16, 20, 7 | co 7413 |
. . . 4
class
(-1β(β―β{π β β β£ π β₯ π₯})) |
22 | 13, 14, 21 | cif 4529 |
. . 3
class
if(βπ β
β (πβ2) β₯
π₯, 0,
(-1β(β―β{π
β β β£ π
β₯ π₯}))) |
23 | 2, 3, 22 | cmpt 5232 |
. 2
class (π₯ β β β¦
if(βπ β β
(πβ2) β₯ π₯, 0,
(-1β(β―β{π
β β β£ π
β₯ π₯})))) |
24 | 1, 23 | wceq 1539 |
1
wff ΞΌ =
(π₯ β β β¦
if(βπ β β
(πβ2) β₯ π₯, 0,
(-1β(β―β{π
β β β£ π
β₯ π₯})))) |