MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mu Structured version   Visualization version   GIF version

Definition df-mu 26839
Description: Define the MΓΆbius function, which is zero for non-squarefree numbers and is -1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in [ApostolNT] p. 24. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
df-mu ΞΌ = (π‘₯ ∈ β„• ↦ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))))
Distinct variable group:   π‘₯,𝑝

Detailed syntax breakdown of Definition df-mu
StepHypRef Expression
1 cmu 26833 . 2 class ΞΌ
2 vx . . 3 setvar π‘₯
3 cn 12218 . . 3 class β„•
4 vp . . . . . . . 8 setvar 𝑝
54cv 1538 . . . . . . 7 class 𝑝
6 c2 12273 . . . . . . 7 class 2
7 cexp 14033 . . . . . . 7 class ↑
85, 6, 7co 7413 . . . . . 6 class (𝑝↑2)
92cv 1538 . . . . . 6 class π‘₯
10 cdvds 16203 . . . . . 6 class βˆ₯
118, 9, 10wbr 5149 . . . . 5 wff (𝑝↑2) βˆ₯ π‘₯
12 cprime 16614 . . . . 5 class β„™
1311, 4, 12wrex 3068 . . . 4 wff βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯
14 cc0 11114 . . . 4 class 0
15 c1 11115 . . . . . 6 class 1
1615cneg 11451 . . . . 5 class -1
175, 9, 10wbr 5149 . . . . . . 7 wff 𝑝 βˆ₯ π‘₯
1817, 4, 12crab 3430 . . . . . 6 class {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}
19 chash 14296 . . . . . 6 class β™―
2018, 19cfv 6544 . . . . 5 class (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯})
2116, 20, 7co 7413 . . . 4 class (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))
2213, 14, 21cif 4529 . . 3 class if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯})))
232, 3, 22cmpt 5232 . 2 class (π‘₯ ∈ β„• ↦ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))))
241, 23wceq 1539 1 wff ΞΌ = (π‘₯ ∈ β„• ↦ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))))
Colors of variables: wff setvar class
This definition is referenced by:  muval  26870  muf  26878
  Copyright terms: Public domain W3C validator