Detailed syntax breakdown of Definition df-mu
| Step | Hyp | Ref
| Expression |
| 1 | | cmu 27062 |
. 2
class
μ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cn 12245 |
. . 3
class
ℕ |
| 4 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 6 | | c2 12300 |
. . . . . . 7
class
2 |
| 7 | | cexp 14084 |
. . . . . . 7
class
↑ |
| 8 | 5, 6, 7 | co 7410 |
. . . . . 6
class (𝑝↑2) |
| 9 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 10 | | cdvds 16277 |
. . . . . 6
class
∥ |
| 11 | 8, 9, 10 | wbr 5124 |
. . . . 5
wff (𝑝↑2) ∥ 𝑥 |
| 12 | | cprime 16695 |
. . . . 5
class
ℙ |
| 13 | 11, 4, 12 | wrex 3061 |
. . . 4
wff
∃𝑝 ∈
ℙ (𝑝↑2) ∥
𝑥 |
| 14 | | cc0 11134 |
. . . 4
class
0 |
| 15 | | c1 11135 |
. . . . . 6
class
1 |
| 16 | 15 | cneg 11472 |
. . . . 5
class
-1 |
| 17 | 5, 9, 10 | wbr 5124 |
. . . . . . 7
wff 𝑝 ∥ 𝑥 |
| 18 | 17, 4, 12 | crab 3420 |
. . . . . 6
class {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} |
| 19 | | chash 14353 |
. . . . . 6
class
♯ |
| 20 | 18, 19 | cfv 6536 |
. . . . 5
class
(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥}) |
| 21 | 16, 20, 7 | co 7410 |
. . . 4
class
(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})) |
| 22 | 13, 14, 21 | cif 4505 |
. . 3
class
if(∃𝑝 ∈
ℙ (𝑝↑2) ∥
𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥}))) |
| 23 | 2, 3, 22 | cmpt 5206 |
. 2
class (𝑥 ∈ ℕ ↦
if(∃𝑝 ∈ ℙ
(𝑝↑2) ∥ 𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥})))) |
| 24 | 1, 23 | wceq 1540 |
1
wff μ =
(𝑥 ∈ ℕ ↦
if(∃𝑝 ∈ ℙ
(𝑝↑2) ∥ 𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥})))) |