Detailed syntax breakdown of Definition df-mu
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmu 27139 | . 2
class
μ | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | cn 12267 | . . 3
class
ℕ | 
| 4 |  | vp | . . . . . . . 8
setvar 𝑝 | 
| 5 | 4 | cv 1538 | . . . . . . 7
class 𝑝 | 
| 6 |  | c2 12322 | . . . . . . 7
class
2 | 
| 7 |  | cexp 14103 | . . . . . . 7
class
↑ | 
| 8 | 5, 6, 7 | co 7432 | . . . . . 6
class (𝑝↑2) | 
| 9 | 2 | cv 1538 | . . . . . 6
class 𝑥 | 
| 10 |  | cdvds 16291 | . . . . . 6
class 
∥ | 
| 11 | 8, 9, 10 | wbr 5142 | . . . . 5
wff (𝑝↑2) ∥ 𝑥 | 
| 12 |  | cprime 16709 | . . . . 5
class
ℙ | 
| 13 | 11, 4, 12 | wrex 3069 | . . . 4
wff
∃𝑝 ∈
ℙ (𝑝↑2) ∥
𝑥 | 
| 14 |  | cc0 11156 | . . . 4
class
0 | 
| 15 |  | c1 11157 | . . . . . 6
class
1 | 
| 16 | 15 | cneg 11494 | . . . . 5
class
-1 | 
| 17 | 5, 9, 10 | wbr 5142 | . . . . . . 7
wff 𝑝 ∥ 𝑥 | 
| 18 | 17, 4, 12 | crab 3435 | . . . . . 6
class {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} | 
| 19 |  | chash 14370 | . . . . . 6
class
♯ | 
| 20 | 18, 19 | cfv 6560 | . . . . 5
class
(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥}) | 
| 21 | 16, 20, 7 | co 7432 | . . . 4
class
(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})) | 
| 22 | 13, 14, 21 | cif 4524 | . . 3
class
if(∃𝑝 ∈
ℙ (𝑝↑2) ∥
𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥}))) | 
| 23 | 2, 3, 22 | cmpt 5224 | . 2
class (𝑥 ∈ ℕ ↦
if(∃𝑝 ∈ ℙ
(𝑝↑2) ∥ 𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥})))) | 
| 24 | 1, 23 | wceq 1539 | 1
wff μ =
(𝑥 ∈ ℕ ↦
if(∃𝑝 ∈ ℙ
(𝑝↑2) ∥ 𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥})))) |