Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ppif | Structured version Visualization version GIF version |
Description: Domain and range of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ppif | ⊢ π:ℝ⟶ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ppi 25785 | . 2 ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | |
2 | ppifi 25791 | . . 3 ⊢ (𝑥 ∈ ℝ → ((0[,]𝑥) ∩ ℙ) ∈ Fin) | |
3 | hashcl 13768 | . . 3 ⊢ (((0[,]𝑥) ∩ ℙ) ∈ Fin → (♯‘((0[,]𝑥) ∩ ℙ)) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → (♯‘((0[,]𝑥) ∩ ℙ)) ∈ ℕ0) |
5 | 1, 4 | fmpti 6868 | 1 ⊢ π:ℝ⟶ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ∩ cin 3858 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 Fincfn 8528 ℝcr 10575 0cc0 10576 ℕ0cn0 11935 [,]cicc 12783 ♯chash 13741 ℙcprime 16068 πcppi 25779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8940 df-inf 8941 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-n0 11936 df-z 12022 df-uz 12284 df-rp 12432 df-icc 12787 df-fz 12941 df-fl 13212 df-seq 13420 df-exp 13481 df-hash 13742 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-dvds 15657 df-prm 16069 df-ppi 25785 |
This theorem is referenced by: ppicl 25816 |
Copyright terms: Public domain | W3C validator |