|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ppival | Structured version Visualization version GIF version | ||
| Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| ppival | ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 7439 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
| 2 | 1 | ineq1d 4219 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) | 
| 3 | 2 | fveq2d 6910 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ))) | 
| 4 | df-ppi 27143 | . 2 ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | |
| 5 | fvex 6919 | . 2 ⊢ (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 [,]cicc 13390 ♯chash 14369 ℙcprime 16708 πcppi 27137 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-ppi 27143 | 
| This theorem is referenced by: ppival2 27171 ppival2g 27172 ppifl 27203 ppiwordi 27205 chtleppi 27254 | 
| Copyright terms: Public domain | W3C validator |