![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppival | Structured version Visualization version GIF version |
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ppival | ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7417 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
2 | 1 | ineq1d 4212 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
3 | 2 | fveq2d 6896 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ))) |
4 | df-ppi 26604 | . 2 ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | |
5 | fvex 6905 | . 2 ⊢ (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6999 | 1 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∩ cin 3948 ‘cfv 6544 (class class class)co 7409 ℝcr 11109 0cc0 11110 [,]cicc 13327 ♯chash 14290 ℙcprime 16608 πcppi 26598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-ppi 26604 |
This theorem is referenced by: ppival2 26632 ppival2g 26633 ppifl 26664 ppiwordi 26666 chtleppi 26713 |
Copyright terms: Public domain | W3C validator |