MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppival Structured version   Visualization version   GIF version

Theorem ppival 25267
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
ppival (𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))

Proof of Theorem ppival
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6914 . . . 4 (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴))
21ineq1d 4041 . . 3 (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
32fveq2d 6438 . 2 (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ)))
4 df-ppi 25240 . 2 π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))
5 fvex 6447 . 2 (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V
63, 4, 5fvmpt 6530 1 (𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cin 3798  cfv 6124  (class class class)co 6906  cr 10252  0cc0 10253  [,]cicc 12467  chash 13411  cprime 15758  πcppi 25234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-iota 6087  df-fun 6126  df-fv 6132  df-ov 6909  df-ppi 25240
This theorem is referenced by:  ppival2  25268  ppival2g  25269  ppifl  25300  ppiwordi  25302  chtleppi  25349
  Copyright terms: Public domain W3C validator