![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppival | Structured version Visualization version GIF version |
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ppival | ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
2 | 1 | ineq1d 4240 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
3 | 2 | fveq2d 6924 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ))) |
4 | df-ppi 27161 | . 2 ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | |
5 | fvex 6933 | . 2 ⊢ (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | 1 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 [,]cicc 13410 ♯chash 14379 ℙcprime 16718 πcppi 27155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-ppi 27161 |
This theorem is referenced by: ppival2 27189 ppival2g 27190 ppifl 27221 ppiwordi 27223 chtleppi 27272 |
Copyright terms: Public domain | W3C validator |