Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ppival | Structured version Visualization version GIF version |
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ppival | ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7276 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
2 | 1 | ineq1d 4150 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
3 | 2 | fveq2d 6772 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ))) |
4 | df-ppi 26230 | . 2 ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | |
5 | fvex 6781 | . 2 ⊢ (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6869 | 1 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 0cc0 10855 [,]cicc 13064 ♯chash 14025 ℙcprime 16357 πcppi 26224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-ppi 26230 |
This theorem is referenced by: ppival2 26258 ppival2g 26259 ppifl 26290 ppiwordi 26292 chtleppi 26339 |
Copyright terms: Public domain | W3C validator |