![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppival | Structured version Visualization version GIF version |
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ppival | ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6914 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
2 | 1 | ineq1d 4041 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
3 | 2 | fveq2d 6438 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ))) |
4 | df-ppi 25240 | . 2 ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | |
5 | fvex 6447 | . 2 ⊢ (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6530 | 1 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ∩ cin 3798 ‘cfv 6124 (class class class)co 6906 ℝcr 10252 0cc0 10253 [,]cicc 12467 ♯chash 13411 ℙcprime 15758 πcppi 25234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-iota 6087 df-fun 6126 df-fv 6132 df-ov 6909 df-ppi 25240 |
This theorem is referenced by: ppival2 25268 ppival2g 25269 ppifl 25300 ppiwordi 25302 chtleppi 25349 |
Copyright terms: Public domain | W3C validator |