Detailed syntax breakdown of Definition df-pprod
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cB |
. . 3
class 𝐵 |
| 3 | 1, 2 | cpprod 35832 |
. 2
class
pprod(𝐴, 𝐵) |
| 4 | | c1st 8012 |
. . . . 5
class
1st |
| 5 | | cvv 3480 |
. . . . . 6
class
V |
| 6 | 5, 5 | cxp 5683 |
. . . . 5
class (V
× V) |
| 7 | 4, 6 | cres 5687 |
. . . 4
class
(1st ↾ (V × V)) |
| 8 | 1, 7 | ccom 5689 |
. . 3
class (𝐴 ∘ (1st ↾
(V × V))) |
| 9 | | c2nd 8013 |
. . . . 5
class
2nd |
| 10 | 9, 6 | cres 5687 |
. . . 4
class
(2nd ↾ (V × V)) |
| 11 | 2, 10 | ccom 5689 |
. . 3
class (𝐵 ∘ (2nd ↾
(V × V))) |
| 12 | 8, 11 | ctxp 35831 |
. 2
class ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) |
| 13 | 3, 12 | wceq 1540 |
1
wff pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) |