Detailed syntax breakdown of Definition df-txp
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | 1, 2 | ctxp 34059 |
. 2
class (𝐴 ⊗ 𝐵) |
4 | | c1st 7802 |
. . . . . 6
class
1st |
5 | | cvv 3422 |
. . . . . . 7
class
V |
6 | 5, 5 | cxp 5578 |
. . . . . 6
class (V
× V) |
7 | 4, 6 | cres 5582 |
. . . . 5
class
(1st ↾ (V × V)) |
8 | 7 | ccnv 5579 |
. . . 4
class ◡(1st ↾ (V ×
V)) |
9 | 8, 1 | ccom 5584 |
. . 3
class (◡(1st ↾ (V × V))
∘ 𝐴) |
10 | | c2nd 7803 |
. . . . . 6
class
2nd |
11 | 10, 6 | cres 5582 |
. . . . 5
class
(2nd ↾ (V × V)) |
12 | 11 | ccnv 5579 |
. . . 4
class ◡(2nd ↾ (V ×
V)) |
13 | 12, 2 | ccom 5584 |
. . 3
class (◡(2nd ↾ (V × V))
∘ 𝐵) |
14 | 9, 13 | cin 3882 |
. 2
class ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
15 | 3, 14 | wceq 1539 |
1
wff (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |