Detailed syntax breakdown of Definition df-txp
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cB |
. . 3
class 𝐵 |
| 3 | 1, 2 | ctxp 35831 |
. 2
class (𝐴 ⊗ 𝐵) |
| 4 | | c1st 8012 |
. . . . . 6
class
1st |
| 5 | | cvv 3480 |
. . . . . . 7
class
V |
| 6 | 5, 5 | cxp 5683 |
. . . . . 6
class (V
× V) |
| 7 | 4, 6 | cres 5687 |
. . . . 5
class
(1st ↾ (V × V)) |
| 8 | 7 | ccnv 5684 |
. . . 4
class ◡(1st ↾ (V ×
V)) |
| 9 | 8, 1 | ccom 5689 |
. . 3
class (◡(1st ↾ (V × V))
∘ 𝐴) |
| 10 | | c2nd 8013 |
. . . . . 6
class
2nd |
| 11 | 10, 6 | cres 5687 |
. . . . 5
class
(2nd ↾ (V × V)) |
| 12 | 11 | ccnv 5684 |
. . . 4
class ◡(2nd ↾ (V ×
V)) |
| 13 | 12, 2 | ccom 5689 |
. . 3
class (◡(2nd ↾ (V × V))
∘ 𝐵) |
| 14 | 9, 13 | cin 3950 |
. 2
class ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
| 15 | 3, 14 | wceq 1540 |
1
wff (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |