![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpprod2 | Structured version Visualization version GIF version |
Description: Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
dfpprod2 | ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pprod 32502 | . 2 ⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) | |
2 | df-txp 32501 | . 2 ⊢ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) | |
3 | 1, 2 | eqtri 2850 | 1 ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 Vcvv 3415 ∩ cin 3798 × cxp 5341 ◡ccnv 5342 ↾ cres 5345 ∘ ccom 5347 1st c1st 7427 2nd c2nd 7428 ⊗ ctxp 32477 pprodcpprod 32478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 df-cleq 2819 df-txp 32501 df-pprod 32502 |
This theorem is referenced by: pprodcnveq 32530 |
Copyright terms: Public domain | W3C validator |