![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpprod2 | Structured version Visualization version GIF version |
Description: Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
dfpprod2 | ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pprod 35819 | . 2 ⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) | |
2 | df-txp 35818 | . 2 ⊢ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∩ cin 3975 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 1st c1st 8028 2nd c2nd 8029 ⊗ ctxp 35794 pprodcpprod 35795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-txp 35818 df-pprod 35819 |
This theorem is referenced by: pprodcnveq 35847 |
Copyright terms: Public domain | W3C validator |