Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpprod2 Structured version   Visualization version   GIF version

Theorem dfpprod2 34184
Description: Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
dfpprod2 pprod(𝐴, 𝐵) = (((1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V)))))

Proof of Theorem dfpprod2
StepHypRef Expression
1 df-pprod 34157 . 2 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
2 df-txp 34156 . 2 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) = (((1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V)))))
31, 2eqtri 2766 1 pprod(𝐴, 𝐵) = (((1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V)))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cin 3886   × cxp 5587  ccnv 5588  cres 5591  ccom 5593  1st c1st 7829  2nd c2nd 7830  ctxp 34132  pprodcpprod 34133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-txp 34156  df-pprod 34157
This theorem is referenced by:  pprodcnveq  34185
  Copyright terms: Public domain W3C validator