Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpprod2 | Structured version Visualization version GIF version |
Description: Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
dfpprod2 | ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pprod 34084 | . 2 ⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) | |
2 | df-txp 34083 | . 2 ⊢ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∩ cin 3882 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 1st c1st 7802 2nd c2nd 7803 ⊗ ctxp 34059 pprodcpprod 34060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-txp 34083 df-pprod 34084 |
This theorem is referenced by: pprodcnveq 34112 |
Copyright terms: Public domain | W3C validator |