Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod Structured version   Visualization version   GIF version

Theorem brpprod 34845
Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 34844, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod.1 𝑋 ∈ V
brpprod.2 π‘Œ ∈ V
brpprod.3 𝑍 ∈ V
brpprod.4 π‘Š ∈ V
Assertion
Ref Expression
brpprod (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝐴, 𝐡)βŸ¨π‘, π‘ŠβŸ© ↔ (𝑋𝐴𝑍 ∧ π‘Œπ΅π‘Š))

Proof of Theorem brpprod
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 34815 . . 3 pprod(𝐴, 𝐡) = ((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))
21breqi 5153 . 2 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝐴, 𝐡)βŸ¨π‘, π‘ŠβŸ© ↔ βŸ¨π‘‹, π‘ŒβŸ©((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))βŸ¨π‘, π‘ŠβŸ©)
3 opex 5463 . . 3 βŸ¨π‘‹, π‘ŒβŸ© ∈ V
4 brpprod.3 . . 3 𝑍 ∈ V
5 brpprod.4 . . 3 π‘Š ∈ V
63, 4, 5brtxp 34840 . 2 (βŸ¨π‘‹, π‘ŒβŸ©((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))βŸ¨π‘, π‘ŠβŸ© ↔ (βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ∧ βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š))
73, 4brco 5868 . . . 4 (βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ↔ βˆƒπ‘₯(βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ∧ π‘₯𝐴𝑍))
8 brpprod.1 . . . . . . . . 9 𝑋 ∈ V
9 brpprod.2 . . . . . . . . 9 π‘Œ ∈ V
108, 9opelvv 5714 . . . . . . . 8 βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V)
11 vex 3478 . . . . . . . . 9 π‘₯ ∈ V
1211brresi 5988 . . . . . . . 8 (βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ↔ (βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V) ∧ βŸ¨π‘‹, π‘ŒβŸ©1st π‘₯))
1310, 12mpbiran 707 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ↔ βŸ¨π‘‹, π‘ŒβŸ©1st π‘₯)
148, 9br1steq 34730 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©1st π‘₯ ↔ π‘₯ = 𝑋)
1513, 14bitri 274 . . . . . 6 (βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ↔ π‘₯ = 𝑋)
1615anbi1i 624 . . . . 5 ((βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ∧ π‘₯𝐴𝑍) ↔ (π‘₯ = 𝑋 ∧ π‘₯𝐴𝑍))
1716exbii 1850 . . . 4 (βˆƒπ‘₯(βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ∧ π‘₯𝐴𝑍) ↔ βˆƒπ‘₯(π‘₯ = 𝑋 ∧ π‘₯𝐴𝑍))
18 breq1 5150 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯𝐴𝑍 ↔ 𝑋𝐴𝑍))
198, 18ceqsexv 3525 . . . 4 (βˆƒπ‘₯(π‘₯ = 𝑋 ∧ π‘₯𝐴𝑍) ↔ 𝑋𝐴𝑍)
207, 17, 193bitri 296 . . 3 (βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ↔ 𝑋𝐴𝑍)
213, 5brco 5868 . . . 4 (βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š ↔ βˆƒπ‘¦(βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ∧ π‘¦π΅π‘Š))
22 vex 3478 . . . . . . . . 9 𝑦 ∈ V
2322brresi 5988 . . . . . . . 8 (βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ↔ (βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V) ∧ βŸ¨π‘‹, π‘ŒβŸ©2nd 𝑦))
2410, 23mpbiran 707 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ↔ βŸ¨π‘‹, π‘ŒβŸ©2nd 𝑦)
258, 9br2ndeq 34731 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©2nd 𝑦 ↔ 𝑦 = π‘Œ)
2624, 25bitri 274 . . . . . 6 (βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ↔ 𝑦 = π‘Œ)
2726anbi1i 624 . . . . 5 ((βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ∧ π‘¦π΅π‘Š) ↔ (𝑦 = π‘Œ ∧ π‘¦π΅π‘Š))
2827exbii 1850 . . . 4 (βˆƒπ‘¦(βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ∧ π‘¦π΅π‘Š) ↔ βˆƒπ‘¦(𝑦 = π‘Œ ∧ π‘¦π΅π‘Š))
29 breq1 5150 . . . . 5 (𝑦 = π‘Œ β†’ (π‘¦π΅π‘Š ↔ π‘Œπ΅π‘Š))
309, 29ceqsexv 3525 . . . 4 (βˆƒπ‘¦(𝑦 = π‘Œ ∧ π‘¦π΅π‘Š) ↔ π‘Œπ΅π‘Š)
3121, 28, 303bitri 296 . . 3 (βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š ↔ π‘Œπ΅π‘Š)
3220, 31anbi12i 627 . 2 ((βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ∧ βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š) ↔ (𝑋𝐴𝑍 ∧ π‘Œπ΅π‘Š))
332, 6, 323bitri 296 1 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝐴, 𝐡)βŸ¨π‘, π‘ŠβŸ© ↔ (𝑋𝐴𝑍 ∧ π‘Œπ΅π‘Š))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4633   class class class wbr 5147   Γ— cxp 5673   β†Ύ cres 5677   ∘ ccom 5679  1st c1st 7969  2nd c2nd 7970   βŠ— ctxp 34790  pprodcpprod 34791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972  df-txp 34814  df-pprod 34815
This theorem is referenced by:  brpprod3a  34846
  Copyright terms: Public domain W3C validator