Step | Hyp | Ref
| Expression |
1 | | df-pprod 34815 |
. . 3
β’
pprod(π΄, π΅) = ((π΄ β (1st βΎ (V Γ
V))) β (π΅ β
(2nd βΎ (V Γ V)))) |
2 | 1 | breqi 5153 |
. 2
β’
(β¨π, πβ©pprod(π΄, π΅)β¨π, πβ© β β¨π, πβ©((π΄ β (1st βΎ (V Γ
V))) β (π΅ β
(2nd βΎ (V Γ V))))β¨π, πβ©) |
3 | | opex 5463 |
. . 3
β’
β¨π, πβ© β V |
4 | | brpprod.3 |
. . 3
β’ π β V |
5 | | brpprod.4 |
. . 3
β’ π β V |
6 | 3, 4, 5 | brtxp 34840 |
. 2
β’
(β¨π, πβ©((π΄ β (1st βΎ (V Γ
V))) β (π΅ β
(2nd βΎ (V Γ V))))β¨π, πβ© β (β¨π, πβ©(π΄ β (1st βΎ (V Γ
V)))π β§ β¨π, πβ©(π΅ β (2nd βΎ (V Γ
V)))π)) |
7 | 3, 4 | brco 5868 |
. . . 4
β’
(β¨π, πβ©(π΄ β (1st βΎ (V Γ
V)))π β βπ₯(β¨π, πβ©(1st βΎ (V Γ
V))π₯ β§ π₯π΄π)) |
8 | | brpprod.1 |
. . . . . . . . 9
β’ π β V |
9 | | brpprod.2 |
. . . . . . . . 9
β’ π β V |
10 | 8, 9 | opelvv 5714 |
. . . . . . . 8
β’
β¨π, πβ© β (V Γ
V) |
11 | | vex 3478 |
. . . . . . . . 9
β’ π₯ β V |
12 | 11 | brresi 5988 |
. . . . . . . 8
β’
(β¨π, πβ©(1st βΎ (V
Γ V))π₯ β
(β¨π, πβ© β (V Γ V) β§
β¨π, πβ©1st π₯)) |
13 | 10, 12 | mpbiran 707 |
. . . . . . 7
β’
(β¨π, πβ©(1st βΎ (V
Γ V))π₯ β
β¨π, πβ©1st π₯) |
14 | 8, 9 | br1steq 34730 |
. . . . . . 7
β’
(β¨π, πβ©1st π₯ β π₯ = π) |
15 | 13, 14 | bitri 274 |
. . . . . 6
β’
(β¨π, πβ©(1st βΎ (V
Γ V))π₯ β π₯ = π) |
16 | 15 | anbi1i 624 |
. . . . 5
β’
((β¨π, πβ©(1st βΎ (V
Γ V))π₯ β§ π₯π΄π) β (π₯ = π β§ π₯π΄π)) |
17 | 16 | exbii 1850 |
. . . 4
β’
(βπ₯(β¨π, πβ©(1st βΎ (V Γ
V))π₯ β§ π₯π΄π) β βπ₯(π₯ = π β§ π₯π΄π)) |
18 | | breq1 5150 |
. . . . 5
β’ (π₯ = π β (π₯π΄π β ππ΄π)) |
19 | 8, 18 | ceqsexv 3525 |
. . . 4
β’
(βπ₯(π₯ = π β§ π₯π΄π) β ππ΄π) |
20 | 7, 17, 19 | 3bitri 296 |
. . 3
β’
(β¨π, πβ©(π΄ β (1st βΎ (V Γ
V)))π β ππ΄π) |
21 | 3, 5 | brco 5868 |
. . . 4
β’
(β¨π, πβ©(π΅ β (2nd βΎ (V Γ
V)))π β βπ¦(β¨π, πβ©(2nd βΎ (V Γ
V))π¦ β§ π¦π΅π)) |
22 | | vex 3478 |
. . . . . . . . 9
β’ π¦ β V |
23 | 22 | brresi 5988 |
. . . . . . . 8
β’
(β¨π, πβ©(2nd βΎ (V
Γ V))π¦ β
(β¨π, πβ© β (V Γ V) β§
β¨π, πβ©2nd π¦)) |
24 | 10, 23 | mpbiran 707 |
. . . . . . 7
β’
(β¨π, πβ©(2nd βΎ (V
Γ V))π¦ β
β¨π, πβ©2nd π¦) |
25 | 8, 9 | br2ndeq 34731 |
. . . . . . 7
β’
(β¨π, πβ©2nd π¦ β π¦ = π) |
26 | 24, 25 | bitri 274 |
. . . . . 6
β’
(β¨π, πβ©(2nd βΎ (V
Γ V))π¦ β π¦ = π) |
27 | 26 | anbi1i 624 |
. . . . 5
β’
((β¨π, πβ©(2nd βΎ (V
Γ V))π¦ β§ π¦π΅π) β (π¦ = π β§ π¦π΅π)) |
28 | 27 | exbii 1850 |
. . . 4
β’
(βπ¦(β¨π, πβ©(2nd βΎ (V Γ
V))π¦ β§ π¦π΅π) β βπ¦(π¦ = π β§ π¦π΅π)) |
29 | | breq1 5150 |
. . . . 5
β’ (π¦ = π β (π¦π΅π β ππ΅π)) |
30 | 9, 29 | ceqsexv 3525 |
. . . 4
β’
(βπ¦(π¦ = π β§ π¦π΅π) β ππ΅π) |
31 | 21, 28, 30 | 3bitri 296 |
. . 3
β’
(β¨π, πβ©(π΅ β (2nd βΎ (V Γ
V)))π β ππ΅π) |
32 | 20, 31 | anbi12i 627 |
. 2
β’
((β¨π, πβ©(π΄ β (1st βΎ (V Γ
V)))π β§ β¨π, πβ©(π΅ β (2nd βΎ (V Γ
V)))π) β (ππ΄π β§ ππ΅π)) |
33 | 2, 6, 32 | 3bitri 296 |
1
β’
(β¨π, πβ©pprod(π΄, π΅)β¨π, πβ© β (ππ΄π β§ ππ΅π)) |