Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod Structured version   Visualization version   GIF version

Theorem brpprod 35925
Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 35924, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod.1 𝑋 ∈ V
brpprod.2 𝑌 ∈ V
brpprod.3 𝑍 ∈ V
brpprod.4 𝑊 ∈ V
Assertion
Ref Expression
brpprod (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))

Proof of Theorem brpprod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 35895 . . 3 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
21breqi 5097 . 2 (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ ⟨𝑋, 𝑌⟩((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑍, 𝑊⟩)
3 opex 5404 . . 3 𝑋, 𝑌⟩ ∈ V
4 brpprod.3 . . 3 𝑍 ∈ V
5 brpprod.4 . . 3 𝑊 ∈ V
63, 4, 5brtxp 35920 . 2 (⟨𝑋, 𝑌⟩((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑍, 𝑊⟩ ↔ (⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍 ∧ ⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊))
73, 4brco 5810 . . . 4 (⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍 ↔ ∃𝑥(⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥𝐴𝑍))
8 brpprod.1 . . . . . . . . 9 𝑋 ∈ V
9 brpprod.2 . . . . . . . . 9 𝑌 ∈ V
108, 9opelvv 5656 . . . . . . . 8 𝑋, 𝑌⟩ ∈ (V × V)
11 vex 3440 . . . . . . . . 9 𝑥 ∈ V
1211brresi 5937 . . . . . . . 8 (⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥 ↔ (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ ⟨𝑋, 𝑌⟩1st 𝑥))
1310, 12mpbiran 709 . . . . . . 7 (⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥 ↔ ⟨𝑋, 𝑌⟩1st 𝑥)
148, 9br1steq 35813 . . . . . . 7 (⟨𝑋, 𝑌⟩1st 𝑥𝑥 = 𝑋)
1513, 14bitri 275 . . . . . 6 (⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥 = 𝑋)
1615anbi1i 624 . . . . 5 ((⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥𝐴𝑍) ↔ (𝑥 = 𝑋𝑥𝐴𝑍))
1716exbii 1849 . . . 4 (∃𝑥(⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥𝐴𝑍) ↔ ∃𝑥(𝑥 = 𝑋𝑥𝐴𝑍))
18 breq1 5094 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑍𝑋𝐴𝑍))
198, 18ceqsexv 3487 . . . 4 (∃𝑥(𝑥 = 𝑋𝑥𝐴𝑍) ↔ 𝑋𝐴𝑍)
207, 17, 193bitri 297 . . 3 (⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍𝑋𝐴𝑍)
213, 5brco 5810 . . . 4 (⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊 ↔ ∃𝑦(⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦𝐵𝑊))
22 vex 3440 . . . . . . . . 9 𝑦 ∈ V
2322brresi 5937 . . . . . . . 8 (⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦 ↔ (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ ⟨𝑋, 𝑌⟩2nd 𝑦))
2410, 23mpbiran 709 . . . . . . 7 (⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦 ↔ ⟨𝑋, 𝑌⟩2nd 𝑦)
258, 9br2ndeq 35814 . . . . . . 7 (⟨𝑋, 𝑌⟩2nd 𝑦𝑦 = 𝑌)
2624, 25bitri 275 . . . . . 6 (⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦 = 𝑌)
2726anbi1i 624 . . . . 5 ((⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦𝐵𝑊) ↔ (𝑦 = 𝑌𝑦𝐵𝑊))
2827exbii 1849 . . . 4 (∃𝑦(⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦𝐵𝑊) ↔ ∃𝑦(𝑦 = 𝑌𝑦𝐵𝑊))
29 breq1 5094 . . . . 5 (𝑦 = 𝑌 → (𝑦𝐵𝑊𝑌𝐵𝑊))
309, 29ceqsexv 3487 . . . 4 (∃𝑦(𝑦 = 𝑌𝑦𝐵𝑊) ↔ 𝑌𝐵𝑊)
3121, 28, 303bitri 297 . . 3 (⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊𝑌𝐵𝑊)
3220, 31anbi12i 628 . 2 ((⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍 ∧ ⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊) ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))
332, 6, 323bitri 297 1 (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cop 4582   class class class wbr 5091   × cxp 5614  cres 5618  ccom 5620  1st c1st 7919  2nd c2nd 7920  ctxp 35870  pprodcpprod 35871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35894  df-pprod 35895
This theorem is referenced by:  brpprod3a  35926
  Copyright terms: Public domain W3C validator