Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod Structured version   Visualization version   GIF version

Theorem brpprod 35329
Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 35328, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod.1 𝑋 ∈ V
brpprod.2 π‘Œ ∈ V
brpprod.3 𝑍 ∈ V
brpprod.4 π‘Š ∈ V
Assertion
Ref Expression
brpprod (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝐴, 𝐡)βŸ¨π‘, π‘ŠβŸ© ↔ (𝑋𝐴𝑍 ∧ π‘Œπ΅π‘Š))

Proof of Theorem brpprod
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 35299 . . 3 pprod(𝐴, 𝐡) = ((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))
21breqi 5154 . 2 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝐴, 𝐡)βŸ¨π‘, π‘ŠβŸ© ↔ βŸ¨π‘‹, π‘ŒβŸ©((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))βŸ¨π‘, π‘ŠβŸ©)
3 opex 5464 . . 3 βŸ¨π‘‹, π‘ŒβŸ© ∈ V
4 brpprod.3 . . 3 𝑍 ∈ V
5 brpprod.4 . . 3 π‘Š ∈ V
63, 4, 5brtxp 35324 . 2 (βŸ¨π‘‹, π‘ŒβŸ©((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))βŸ¨π‘, π‘ŠβŸ© ↔ (βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ∧ βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š))
73, 4brco 5870 . . . 4 (βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ↔ βˆƒπ‘₯(βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ∧ π‘₯𝐴𝑍))
8 brpprod.1 . . . . . . . . 9 𝑋 ∈ V
9 brpprod.2 . . . . . . . . 9 π‘Œ ∈ V
108, 9opelvv 5716 . . . . . . . 8 βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V)
11 vex 3477 . . . . . . . . 9 π‘₯ ∈ V
1211brresi 5990 . . . . . . . 8 (βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ↔ (βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V) ∧ βŸ¨π‘‹, π‘ŒβŸ©1st π‘₯))
1310, 12mpbiran 706 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ↔ βŸ¨π‘‹, π‘ŒβŸ©1st π‘₯)
148, 9br1steq 35214 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©1st π‘₯ ↔ π‘₯ = 𝑋)
1513, 14bitri 275 . . . . . 6 (βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ↔ π‘₯ = 𝑋)
1615anbi1i 623 . . . . 5 ((βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ∧ π‘₯𝐴𝑍) ↔ (π‘₯ = 𝑋 ∧ π‘₯𝐴𝑍))
1716exbii 1849 . . . 4 (βˆƒπ‘₯(βŸ¨π‘‹, π‘ŒβŸ©(1st β†Ύ (V Γ— V))π‘₯ ∧ π‘₯𝐴𝑍) ↔ βˆƒπ‘₯(π‘₯ = 𝑋 ∧ π‘₯𝐴𝑍))
18 breq1 5151 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯𝐴𝑍 ↔ 𝑋𝐴𝑍))
198, 18ceqsexv 3525 . . . 4 (βˆƒπ‘₯(π‘₯ = 𝑋 ∧ π‘₯𝐴𝑍) ↔ 𝑋𝐴𝑍)
207, 17, 193bitri 297 . . 3 (βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ↔ 𝑋𝐴𝑍)
213, 5brco 5870 . . . 4 (βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š ↔ βˆƒπ‘¦(βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ∧ π‘¦π΅π‘Š))
22 vex 3477 . . . . . . . . 9 𝑦 ∈ V
2322brresi 5990 . . . . . . . 8 (βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ↔ (βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V) ∧ βŸ¨π‘‹, π‘ŒβŸ©2nd 𝑦))
2410, 23mpbiran 706 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ↔ βŸ¨π‘‹, π‘ŒβŸ©2nd 𝑦)
258, 9br2ndeq 35215 . . . . . . 7 (βŸ¨π‘‹, π‘ŒβŸ©2nd 𝑦 ↔ 𝑦 = π‘Œ)
2624, 25bitri 275 . . . . . 6 (βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ↔ 𝑦 = π‘Œ)
2726anbi1i 623 . . . . 5 ((βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ∧ π‘¦π΅π‘Š) ↔ (𝑦 = π‘Œ ∧ π‘¦π΅π‘Š))
2827exbii 1849 . . . 4 (βˆƒπ‘¦(βŸ¨π‘‹, π‘ŒβŸ©(2nd β†Ύ (V Γ— V))𝑦 ∧ π‘¦π΅π‘Š) ↔ βˆƒπ‘¦(𝑦 = π‘Œ ∧ π‘¦π΅π‘Š))
29 breq1 5151 . . . . 5 (𝑦 = π‘Œ β†’ (π‘¦π΅π‘Š ↔ π‘Œπ΅π‘Š))
309, 29ceqsexv 3525 . . . 4 (βˆƒπ‘¦(𝑦 = π‘Œ ∧ π‘¦π΅π‘Š) ↔ π‘Œπ΅π‘Š)
3121, 28, 303bitri 297 . . 3 (βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š ↔ π‘Œπ΅π‘Š)
3220, 31anbi12i 626 . 2 ((βŸ¨π‘‹, π‘ŒβŸ©(𝐴 ∘ (1st β†Ύ (V Γ— V)))𝑍 ∧ βŸ¨π‘‹, π‘ŒβŸ©(𝐡 ∘ (2nd β†Ύ (V Γ— V)))π‘Š) ↔ (𝑋𝐴𝑍 ∧ π‘Œπ΅π‘Š))
332, 6, 323bitri 297 1 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝐴, 𝐡)βŸ¨π‘, π‘ŠβŸ© ↔ (𝑋𝐴𝑍 ∧ π‘Œπ΅π‘Š))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  Vcvv 3473  βŸ¨cop 4634   class class class wbr 5148   Γ— cxp 5674   β†Ύ cres 5678   ∘ ccom 5680  1st c1st 7977  2nd c2nd 7978   βŠ— ctxp 35274  pprodcpprod 35275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-txp 35298  df-pprod 35299
This theorem is referenced by:  brpprod3a  35330
  Copyright terms: Public domain W3C validator