Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod Structured version   Visualization version   GIF version

Theorem brpprod 33406
 Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 33405, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod.1 𝑋 ∈ V
brpprod.2 𝑌 ∈ V
brpprod.3 𝑍 ∈ V
brpprod.4 𝑊 ∈ V
Assertion
Ref Expression
brpprod (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))

Proof of Theorem brpprod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 33376 . . 3 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
21breqi 5058 . 2 (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ ⟨𝑋, 𝑌⟩((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑍, 𝑊⟩)
3 opex 5343 . . 3 𝑋, 𝑌⟩ ∈ V
4 brpprod.3 . . 3 𝑍 ∈ V
5 brpprod.4 . . 3 𝑊 ∈ V
63, 4, 5brtxp 33401 . 2 (⟨𝑋, 𝑌⟩((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑍, 𝑊⟩ ↔ (⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍 ∧ ⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊))
73, 4brco 5728 . . . 4 (⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍 ↔ ∃𝑥(⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥𝐴𝑍))
8 brpprod.1 . . . . . . . . 9 𝑋 ∈ V
9 brpprod.2 . . . . . . . . 9 𝑌 ∈ V
108, 9opelvv 5581 . . . . . . . 8 𝑋, 𝑌⟩ ∈ (V × V)
11 vex 3483 . . . . . . . . 9 𝑥 ∈ V
1211brresi 5849 . . . . . . . 8 (⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥 ↔ (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ ⟨𝑋, 𝑌⟩1st 𝑥))
1310, 12mpbiran 708 . . . . . . 7 (⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥 ↔ ⟨𝑋, 𝑌⟩1st 𝑥)
148, 9br1steq 33074 . . . . . . 7 (⟨𝑋, 𝑌⟩1st 𝑥𝑥 = 𝑋)
1513, 14bitri 278 . . . . . 6 (⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥 = 𝑋)
1615anbi1i 626 . . . . 5 ((⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥𝐴𝑍) ↔ (𝑥 = 𝑋𝑥𝐴𝑍))
1716exbii 1849 . . . 4 (∃𝑥(⟨𝑋, 𝑌⟩(1st ↾ (V × V))𝑥𝑥𝐴𝑍) ↔ ∃𝑥(𝑥 = 𝑋𝑥𝐴𝑍))
18 breq1 5055 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑍𝑋𝐴𝑍))
198, 18ceqsexv 3527 . . . 4 (∃𝑥(𝑥 = 𝑋𝑥𝐴𝑍) ↔ 𝑋𝐴𝑍)
207, 17, 193bitri 300 . . 3 (⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍𝑋𝐴𝑍)
213, 5brco 5728 . . . 4 (⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊 ↔ ∃𝑦(⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦𝐵𝑊))
22 vex 3483 . . . . . . . . 9 𝑦 ∈ V
2322brresi 5849 . . . . . . . 8 (⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦 ↔ (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ ⟨𝑋, 𝑌⟩2nd 𝑦))
2410, 23mpbiran 708 . . . . . . 7 (⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦 ↔ ⟨𝑋, 𝑌⟩2nd 𝑦)
258, 9br2ndeq 33075 . . . . . . 7 (⟨𝑋, 𝑌⟩2nd 𝑦𝑦 = 𝑌)
2624, 25bitri 278 . . . . . 6 (⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦 = 𝑌)
2726anbi1i 626 . . . . 5 ((⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦𝐵𝑊) ↔ (𝑦 = 𝑌𝑦𝐵𝑊))
2827exbii 1849 . . . 4 (∃𝑦(⟨𝑋, 𝑌⟩(2nd ↾ (V × V))𝑦𝑦𝐵𝑊) ↔ ∃𝑦(𝑦 = 𝑌𝑦𝐵𝑊))
29 breq1 5055 . . . . 5 (𝑦 = 𝑌 → (𝑦𝐵𝑊𝑌𝐵𝑊))
309, 29ceqsexv 3527 . . . 4 (∃𝑦(𝑦 = 𝑌𝑦𝐵𝑊) ↔ 𝑌𝐵𝑊)
3121, 28, 303bitri 300 . . 3 (⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊𝑌𝐵𝑊)
3220, 31anbi12i 629 . 2 ((⟨𝑋, 𝑌⟩(𝐴 ∘ (1st ↾ (V × V)))𝑍 ∧ ⟨𝑋, 𝑌⟩(𝐵 ∘ (2nd ↾ (V × V)))𝑊) ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))
332, 6, 323bitri 300 1 (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115  Vcvv 3480  ⟨cop 4556   class class class wbr 5052   × cxp 5540   ↾ cres 5544   ∘ ccom 5546  1st c1st 7682  2nd c2nd 7683   ⊗ ctxp 33351  pprodcpprod 33352 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fo 6349  df-fv 6351  df-1st 7684  df-2nd 7685  df-txp 33375  df-pprod 33376 This theorem is referenced by:  brpprod3a  33407
 Copyright terms: Public domain W3C validator