| Step | Hyp | Ref
| Expression |
| 1 | | df-pprod 35857 |
. 2
⊢
pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) |
| 2 | | txprel 35881 |
. . 3
⊢ Rel
((𝐴 ∘ (1st
↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V ×
V)))) |
| 3 | | txpss3v 35880 |
. . . . . . 7
⊢ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) ⊆ (V × (V ×
V)) |
| 4 | 3 | sseli 3978 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) → 〈𝑥, 𝑦〉 ∈ (V × (V ×
V))) |
| 5 | | opelxp2 5727 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ (V × (V
× V)) → 𝑦 ∈
(V × V)) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) → 𝑦 ∈ (V × V)) |
| 7 | | elvv 5759 |
. . . . . 6
⊢ (𝑦 ∈ (V × V) ↔
∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉) |
| 8 | | opeq2 4873 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝑧, 𝑤〉 → 〈𝑥, 𝑦〉 = 〈𝑥, 〈𝑧, 𝑤〉〉) |
| 9 | 8 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) ↔ 〈𝑥, 〈𝑧, 𝑤〉〉 ∈ ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))))) |
| 10 | | df-br 5143 |
. . . . . . . . 9
⊢ (𝑥((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V))))〈𝑧, 𝑤〉 ↔ 〈𝑥, 〈𝑧, 𝑤〉〉 ∈ ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V))))) |
| 11 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 12 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 13 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
| 14 | 11, 12, 13 | brtxp 35882 |
. . . . . . . . . 10
⊢ (𝑥((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V))))〈𝑧, 𝑤〉 ↔ (𝑥(𝐴 ∘ (1st ↾ (V ×
V)))𝑧 ∧ 𝑥(𝐵 ∘ (2nd ↾ (V ×
V)))𝑤)) |
| 15 | 11, 12 | brco 5880 |
. . . . . . . . . . . 12
⊢ (𝑥(𝐴 ∘ (1st ↾ (V ×
V)))𝑧 ↔ ∃𝑦(𝑥(1st ↾ (V × V))𝑦 ∧ 𝑦𝐴𝑧)) |
| 16 | | vex 3483 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 17 | 16 | brresi 6005 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(1st ↾ (V
× V))𝑦 ↔ (𝑥 ∈ (V × V) ∧
𝑥1st 𝑦)) |
| 18 | 17 | simplbi 497 |
. . . . . . . . . . . . . 14
⊢ (𝑥(1st ↾ (V
× V))𝑦 → 𝑥 ∈ (V ×
V)) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥(1st ↾ (V
× V))𝑦 ∧ 𝑦𝐴𝑧) → 𝑥 ∈ (V × V)) |
| 20 | 19 | exlimiv 1929 |
. . . . . . . . . . . 12
⊢
(∃𝑦(𝑥(1st ↾ (V
× V))𝑦 ∧ 𝑦𝐴𝑧) → 𝑥 ∈ (V × V)) |
| 21 | 15, 20 | sylbi 217 |
. . . . . . . . . . 11
⊢ (𝑥(𝐴 ∘ (1st ↾ (V ×
V)))𝑧 → 𝑥 ∈ (V ×
V)) |
| 22 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥(𝐴 ∘ (1st ↾ (V ×
V)))𝑧 ∧ 𝑥(𝐵 ∘ (2nd ↾ (V ×
V)))𝑤) → 𝑥 ∈ (V ×
V)) |
| 23 | 14, 22 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑥((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V))))〈𝑧, 𝑤〉 → 𝑥 ∈ (V × V)) |
| 24 | 10, 23 | sylbir 235 |
. . . . . . . 8
⊢
(〈𝑥,
〈𝑧, 𝑤〉〉 ∈ ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)) |
| 25 | 9, 24 | biimtrdi 253 |
. . . . . . 7
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))) |
| 26 | 25 | exlimivv 1931 |
. . . . . 6
⊢
(∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉 → (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))) |
| 27 | 7, 26 | sylbi 217 |
. . . . 5
⊢ (𝑦 ∈ (V × V) →
(〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))) |
| 28 | 6, 27 | mpcom 38 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)) |
| 29 | 28, 6 | opelxpd 5723 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) → 〈𝑥, 𝑦〉 ∈ ((V × V) × (V
× V))) |
| 30 | 2, 29 | relssi 5796 |
. 2
⊢ ((𝐴 ∘ (1st ↾
(V × V))) ⊗ (𝐵
∘ (2nd ↾ (V × V)))) ⊆ ((V × V) ×
(V × V)) |
| 31 | 1, 30 | eqsstri 4029 |
1
⊢
pprod(𝐴, 𝐵) ⊆ ((V × V) ×
(V × V)) |