Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodss4v Structured version   Visualization version   GIF version

Theorem pprodss4v 35866
Description: The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
pprodss4v pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))

Proof of Theorem pprodss4v
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 35837 . 2 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
2 txprel 35861 . . 3 Rel ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
3 txpss3v 35860 . . . . . . 7 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ (V × (V × V))
43sseli 3991 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
5 opelxp2 5732 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) → 𝑦 ∈ (V × V))
64, 5syl 17 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑦 ∈ (V × V))
7 elvv 5763 . . . . . 6 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
8 opeq2 4879 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ⟨𝑧, 𝑤⟩⟩)
98eleq1d 2824 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))))
10 df-br 5149 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))))
11 vex 3482 . . . . . . . . . . 11 𝑥 ∈ V
12 vex 3482 . . . . . . . . . . 11 𝑧 ∈ V
13 vex 3482 . . . . . . . . . . 11 𝑤 ∈ V
1411, 12, 13brtxp 35862 . . . . . . . . . 10 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤))
1511, 12brco 5884 . . . . . . . . . . . 12 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧 ↔ ∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧))
16 vex 3482 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
1716brresi 6009 . . . . . . . . . . . . . . 15 (𝑥(1st ↾ (V × V))𝑦 ↔ (𝑥 ∈ (V × V) ∧ 𝑥1st 𝑦))
1817simplbi 497 . . . . . . . . . . . . . 14 (𝑥(1st ↾ (V × V))𝑦𝑥 ∈ (V × V))
1918adantr 480 . . . . . . . . . . . . 13 ((𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2019exlimiv 1928 . . . . . . . . . . . 12 (∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2115, 20sylbi 217 . . . . . . . . . . 11 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥 ∈ (V × V))
2221adantr 480 . . . . . . . . . 10 ((𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤) → 𝑥 ∈ (V × V))
2314, 22sylbi 217 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ → 𝑥 ∈ (V × V))
2410, 23sylbir 235 . . . . . . . 8 (⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
259, 24biimtrdi 253 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
2625exlimivv 1930 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
277, 26sylbi 217 . . . . 5 (𝑦 ∈ (V × V) → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
286, 27mpcom 38 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
2928, 6opelxpd 5728 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ ((V × V) × (V × V)))
302, 29relssi 5800 . 2 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ ((V × V) × (V × V))
311, 30eqsstri 4030 1 pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  wss 3963  cop 4637   class class class wbr 5148   × cxp 5687  cres 5691  ccom 5693  1st c1st 8011  2nd c2nd 8012  ctxp 35812  pprodcpprod 35813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-1st 8013  df-2nd 8014  df-txp 35836  df-pprod 35837
This theorem is referenced by:  brpprod3a  35868
  Copyright terms: Public domain W3C validator