Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodss4v Structured version   Visualization version   GIF version

Theorem pprodss4v 32367
Description: The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
pprodss4v pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))

Proof of Theorem pprodss4v
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 32338 . 2 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
2 txprel 32362 . . 3 Rel ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
3 txpss3v 32361 . . . . . . 7 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ (V × (V × V))
43sseli 3757 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
5 opelxp2 5319 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) → 𝑦 ∈ (V × V))
64, 5syl 17 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑦 ∈ (V × V))
7 elvv 5345 . . . . . 6 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
8 opeq2 4560 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ⟨𝑧, 𝑤⟩⟩)
98eleq1d 2829 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))))
10 df-br 4810 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))))
11 vex 3353 . . . . . . . . . . 11 𝑥 ∈ V
12 vex 3353 . . . . . . . . . . 11 𝑧 ∈ V
13 vex 3353 . . . . . . . . . . 11 𝑤 ∈ V
1411, 12, 13brtxp 32363 . . . . . . . . . 10 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤))
1511, 12brco 5461 . . . . . . . . . . . 12 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧 ↔ ∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧))
16 vex 3353 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
1716brresi 5574 . . . . . . . . . . . . . . 15 (𝑥(1st ↾ (V × V))𝑦 ↔ (𝑥 ∈ (V × V) ∧ 𝑥1st 𝑦))
1817simplbi 491 . . . . . . . . . . . . . 14 (𝑥(1st ↾ (V × V))𝑦𝑥 ∈ (V × V))
1918adantr 472 . . . . . . . . . . . . 13 ((𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2019exlimiv 2025 . . . . . . . . . . . 12 (∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2115, 20sylbi 208 . . . . . . . . . . 11 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥 ∈ (V × V))
2221adantr 472 . . . . . . . . . 10 ((𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤) → 𝑥 ∈ (V × V))
2314, 22sylbi 208 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ → 𝑥 ∈ (V × V))
2410, 23sylbir 226 . . . . . . . 8 (⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
259, 24syl6bi 244 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
2625exlimivv 2027 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
277, 26sylbi 208 . . . . 5 (𝑦 ∈ (V × V) → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
286, 27mpcom 38 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
2928, 6opelxpd 5315 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ ((V × V) × (V × V)))
302, 29relssi 5380 . 2 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ ((V × V) × (V × V))
311, 30eqsstri 3795 1 pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wex 1874  wcel 2155  Vcvv 3350  wss 3732  cop 4340   class class class wbr 4809   × cxp 5275  cres 5279  ccom 5281  1st c1st 7364  2nd c2nd 7365  ctxp 32313  pprodcpprod 32314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fo 6074  df-fv 6076  df-1st 7366  df-2nd 7367  df-txp 32337  df-pprod 32338
This theorem is referenced by:  brpprod3a  32369
  Copyright terms: Public domain W3C validator