Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-prmo | Structured version Visualization version GIF version |
Description: Define the primorial
function on nonnegative integers as the product of
all prime numbers less than or equal to the integer. For example,
(#p‘10) = 2 · 3 · 5
· 7 = 210 (see ex-prmo 28802).
In the literature, the primorial function is written as a postscript hash: 6# = 30. In contrast to prmorcht 26308, where the primorial function is defined by using the sequence builder (𝑃 = seq1( · , 𝐹)), the more specialized definition of a product of a series is used here. (Contributed by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
df-prmo | ⊢ #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cprmo 16713 | . 2 class #p | |
2 | vn | . . 3 setvar 𝑛 | |
3 | cn0 12216 | . . 3 class ℕ0 | |
4 | c1 10856 | . . . . 5 class 1 | |
5 | 2 | cv 1540 | . . . . 5 class 𝑛 |
6 | cfz 13221 | . . . . 5 class ... | |
7 | 4, 5, 6 | co 7268 | . . . 4 class (1...𝑛) |
8 | vk | . . . . . . 7 setvar 𝑘 | |
9 | 8 | cv 1540 | . . . . . 6 class 𝑘 |
10 | cprime 16357 | . . . . . 6 class ℙ | |
11 | 9, 10 | wcel 2109 | . . . . 5 wff 𝑘 ∈ ℙ |
12 | 11, 9, 4 | cif 4464 | . . . 4 class if(𝑘 ∈ ℙ, 𝑘, 1) |
13 | 7, 12, 8 | cprod 15596 | . . 3 class ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) |
14 | 2, 3, 13 | cmpt 5161 | . 2 class (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
15 | 1, 14 | wceq 1541 | 1 wff #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
Colors of variables: wff setvar class |
This definition is referenced by: prmoval 16715 |
Copyright terms: Public domain | W3C validator |