![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmoval | Structured version Visualization version GIF version |
Description: Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmoval | ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . 3 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | prodeq1d 15968 | . 2 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
3 | df-prmo 17079 | . 2 ⊢ #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) | |
4 | prodex 15953 | . 2 ⊢ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V | |
5 | 2, 3, 4 | fvmpt 7029 | 1 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 ‘cfv 6573 (class class class)co 7448 1c1 11185 ℕ0cn0 12553 ...cfz 13567 ∏cprod 15951 ℙcprime 16718 #pcprmo 17078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-prod 15952 df-prmo 17079 |
This theorem is referenced by: prmocl 17081 prmo0 17083 prmo1 17084 prmop1 17085 prmdvdsprmo 17089 prmolefac 17093 prmodvdslcmf 17094 prmgapprmo 17109 |
Copyright terms: Public domain | W3C validator |