MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmoval Structured version   Visualization version   GIF version

Theorem prmoval 16945
Description: Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmoval (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem prmoval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21prodeq1d 15827 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
3 df-prmo 16944 . 2 #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4 prodex 15812 . 2 𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
52, 3, 4fvmpt 6930 1 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ifcif 4476  cfv 6482  (class class class)co 7349  1c1 11010  0cn0 12384  ...cfz 13410  cprod 15810  cprime 16582  #pcprmo 16943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seq 13909  df-prod 15811  df-prmo 16944
This theorem is referenced by:  prmocl  16946  prmo0  16948  prmo1  16949  prmop1  16950  prmdvdsprmo  16954  prmolefac  16958  prmodvdslcmf  16959  prmgapprmo  16974
  Copyright terms: Public domain W3C validator