Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmoval Structured version   Visualization version   GIF version

Theorem prmoval 16362
 Description: Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmoval (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem prmoval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7147 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21prodeq1d 15270 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
3 df-prmo 16361 . 2 #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4 prodex 15256 . 2 𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
52, 3, 4fvmpt 6749 1 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  ifcif 4428  ‘cfv 6328  (class class class)co 7139  1c1 10531  ℕ0cn0 11889  ...cfz 12889  ∏cprod 15254  ℙcprime 16008  #pcprmo 16360 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-iota 6287  df-fun 6330  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-seq 13369  df-prod 15255  df-prmo 16361 This theorem is referenced by:  prmocl  16363  prmo0  16365  prmo1  16366  prmop1  16367  prmdvdsprmo  16371  prmolefac  16375  prmodvdslcmf  16376  prmgapprmo  16391
 Copyright terms: Public domain W3C validator