Step | Hyp | Ref
| Expression |
1 | | nnre 11980 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
2 | | chtval 26259 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(θ‘𝐴) =
Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(θ‘𝐴) =
Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘)) |
4 | | 2eluzge1 12634 |
. . . . . . . . . 10
⊢ 2 ∈
(ℤ≥‘1) |
5 | | ppisval2 26254 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈
(ℤ≥‘1)) → ((0[,]𝐴) ∩ ℙ) =
((1...(⌊‘𝐴))
∩ ℙ)) |
6 | 1, 4, 5 | sylancl 586 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
((0[,]𝐴) ∩ ℙ) =
((1...(⌊‘𝐴))
∩ ℙ)) |
7 | | nnz 12342 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
8 | | flid 13528 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ →
(⌊‘𝐴) = 𝐴) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
(⌊‘𝐴) = 𝐴) |
10 | 9 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(1...(⌊‘𝐴)) =
(1...𝐴)) |
11 | 10 | ineq1d 4145 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
((1...(⌊‘𝐴))
∩ ℙ) = ((1...𝐴)
∩ ℙ)) |
12 | 6, 11 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
((0[,]𝐴) ∩ ℙ) =
((1...𝐴) ∩
ℙ)) |
13 | 12 | sumeq1d 15413 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘)) |
14 | | inss1 4162 |
. . . . . . . 8
⊢
((1...𝐴) ∩
ℙ) ⊆ (1...𝐴) |
15 | | elinel1 4129 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((1...𝐴) ∩ ℙ) → 𝑘 ∈ (1...𝐴)) |
16 | | elfznn 13285 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) |
17 | 16 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℕ) |
18 | 17 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℝ+) |
19 | 18 | relogcld 25778 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℝ) |
20 | 19 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℂ) |
21 | 15, 20 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑘) ∈
ℂ) |
22 | 21 | ralrimiva 3103 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
∀𝑘 ∈
((1...𝐴) ∩
ℙ)(log‘𝑘)
∈ ℂ) |
23 | | fzfi 13692 |
. . . . . . . . . 10
⊢
(1...𝐴) ∈
Fin |
24 | 23 | olci 863 |
. . . . . . . . 9
⊢
((1...𝐴) ⊆
(ℤ≥‘1) ∨ (1...𝐴) ∈ Fin) |
25 | | sumss2 15438 |
. . . . . . . . 9
⊢
(((((1...𝐴) ∩
ℙ) ⊆ (1...𝐴)
∧ ∀𝑘 ∈
((1...𝐴) ∩
ℙ)(log‘𝑘)
∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ≥‘1)
∨ (1...𝐴) ∈ Fin))
→ Σ𝑘 ∈
((1...𝐴) ∩
ℙ)(log‘𝑘) =
Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)) |
26 | 24, 25 | mpan2 688 |
. . . . . . . 8
⊢
((((1...𝐴) ∩
ℙ) ⊆ (1...𝐴)
∧ ∀𝑘 ∈
((1...𝐴) ∩
ℙ)(log‘𝑘)
∈ ℂ) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)) |
27 | 14, 22, 26 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)) |
28 | 13, 27 | eqtrd 2778 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)) |
29 | 3, 28 | eqtrd 2778 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
(θ‘𝐴) =
Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)) |
30 | | elin 3903 |
. . . . . . . 8
⊢ (𝑘 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐴) ∧ 𝑘 ∈ ℙ)) |
31 | 30 | baibr 537 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝐴) → (𝑘 ∈ ℙ ↔ 𝑘 ∈ ((1...𝐴) ∩ ℙ))) |
32 | 31 | ifbid 4482 |
. . . . . 6
⊢ (𝑘 ∈ (1...𝐴) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) = if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)) |
33 | 32 | sumeq2i 15411 |
. . . . 5
⊢
Σ𝑘 ∈
(1...𝐴)if(𝑘 ∈ ℙ,
(log‘𝑘), 0) =
Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0) |
34 | 29, 33 | eqtr4di 2796 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(θ‘𝐴) =
Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0)) |
35 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
36 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (log‘𝑛) = (log‘𝑘)) |
37 | 35, 36 | ifbieq1d 4483 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)) |
38 | | eqid 2738 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ,
(log‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ,
(log‘𝑛),
0)) |
39 | | fvex 6787 |
. . . . . . . 8
⊢
(log‘𝑘) ∈
V |
40 | | 0cn 10967 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
41 | 40 | elexi 3451 |
. . . . . . . 8
⊢ 0 ∈
V |
42 | 39, 41 | ifex 4509 |
. . . . . . 7
⊢ if(𝑘 ∈ ℙ,
(log‘𝑘), 0) ∈
V |
43 | 37, 38, 42 | fvmpt 6875 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ,
(log‘𝑛),
0))‘𝑘) = if(𝑘 ∈ ℙ,
(log‘𝑘),
0)) |
44 | 17, 43 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)) |
45 | | elnnuz 12622 |
. . . . . 6
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈
(ℤ≥‘1)) |
46 | 45 | biimpi 215 |
. . . . 5
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
(ℤ≥‘1)) |
47 | | ifcl 4504 |
. . . . . 6
⊢
(((log‘𝑘)
∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈
ℂ) |
48 | 20, 40, 47 | sylancl 586 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈
ℂ) |
49 | 44, 46, 48 | fsumser 15442 |
. . . 4
⊢ (𝐴 ∈ ℕ →
Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ,
(log‘𝑛),
0)))‘𝐴)) |
50 | 34, 49 | eqtrd 2778 |
. . 3
⊢ (𝐴 ∈ ℕ →
(θ‘𝐴) = (seq1(
+ , (𝑛 ∈ ℕ
↦ if(𝑛 ∈
ℙ, (log‘𝑛),
0)))‘𝐴)) |
51 | 50 | fveq2d 6778 |
. 2
⊢ (𝐴 ∈ ℕ →
(exp‘(θ‘𝐴)) = (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ,
(log‘𝑛),
0)))‘𝐴))) |
52 | | addcl 10953 |
. . . 4
⊢ ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (𝑘 + 𝑝) ∈ ℂ) |
53 | 52 | adantl 482 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (𝑘 + 𝑝) ∈ ℂ) |
54 | 44, 48 | eqeltrd 2839 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) ∈ ℂ) |
55 | | efadd 15803 |
. . . 4
⊢ ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) →
(exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝))) |
56 | 55 | adantl 482 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) →
(exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝))) |
57 | | 1nn 11984 |
. . . . . . 7
⊢ 1 ∈
ℕ |
58 | | ifcl 4504 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 1 ∈
ℕ) → if(𝑘 ∈
ℙ, 𝑘, 1) ∈
ℕ) |
59 | 17, 57, 58 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ) |
60 | 59 | nnrpd 12770 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈
ℝ+) |
61 | 60 | reeflogd 25779 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))) = if(𝑘 ∈ ℙ, 𝑘, 1)) |
62 | | fvif 6790 |
. . . . . . 7
⊢
(log‘if(𝑘
∈ ℙ, 𝑘, 1)) =
if(𝑘 ∈ ℙ,
(log‘𝑘),
(log‘1)) |
63 | | log1 25741 |
. . . . . . . 8
⊢
(log‘1) = 0 |
64 | | ifeq2 4464 |
. . . . . . . 8
⊢
((log‘1) = 0 → if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ,
(log‘𝑘),
0)) |
65 | 63, 64 | ax-mp 5 |
. . . . . . 7
⊢ if(𝑘 ∈ ℙ,
(log‘𝑘),
(log‘1)) = if(𝑘
∈ ℙ, (log‘𝑘), 0) |
66 | 62, 65 | eqtri 2766 |
. . . . . 6
⊢
(log‘if(𝑘
∈ ℙ, 𝑘, 1)) =
if(𝑘 ∈ ℙ,
(log‘𝑘),
0) |
67 | 44, 66 | eqtr4di 2796 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = (log‘if(𝑘 ∈ ℙ, 𝑘, 1))) |
68 | 67 | fveq2d 6778 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1)))) |
69 | | id 22 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → 𝑛 = 𝑘) |
70 | 35, 69 | ifbieq1d 4483 |
. . . . . 6
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, 𝑛, 1) = if(𝑘 ∈ ℙ, 𝑘, 1)) |
71 | | prmorcht.1 |
. . . . . 6
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) |
72 | | vex 3436 |
. . . . . . 7
⊢ 𝑘 ∈ V |
73 | 57 | elexi 3451 |
. . . . . . 7
⊢ 1 ∈
V |
74 | 72, 73 | ifex 4509 |
. . . . . 6
⊢ if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V |
75 | 70, 71, 74 | fvmpt 6875 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1)) |
76 | 17, 75 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1)) |
77 | 61, 68, 76 | 3eqtr4d 2788 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (𝐹‘𝑘)) |
78 | 53, 54, 46, 56, 77 | seqhomo 13770 |
. 2
⊢ (𝐴 ∈ ℕ →
(exp‘(seq1( + , (𝑛
∈ ℕ ↦ if(𝑛
∈ ℙ, (log‘𝑛), 0)))‘𝐴)) = (seq1( · , 𝐹)‘𝐴)) |
79 | 51, 78 | eqtrd 2778 |
1
⊢ (𝐴 ∈ ℕ →
(exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴)) |