MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Visualization version   GIF version

Theorem prmorcht 27064
Description: Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
Assertion
Ref Expression
prmorcht (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))

Proof of Theorem prmorcht
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 12169 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 chtval 26996 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
4 2eluzge1 12817 . . . . . . . . . 10 2 ∈ (ℤ‘1)
5 ppisval2 26991 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
61, 4, 5sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
7 nnz 12526 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 flid 13746 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
97, 8syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (⌊‘𝐴) = 𝐴)
109oveq2d 7385 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...(⌊‘𝐴)) = (1...𝐴))
1110ineq1d 4178 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1...(⌊‘𝐴)) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
126, 11eqtrd 2764 . . . . . . . 8 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
1312sumeq1d 15642 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘))
14 inss1 4196 . . . . . . . 8 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
15 elinel1 4160 . . . . . . . . . 10 (𝑘 ∈ ((1...𝐴) ∩ ℙ) → 𝑘 ∈ (1...𝐴))
16 elfznn 13490 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
1716adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℕ)
1817nnrpd 12969 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℝ+)
1918relogcld 26508 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℝ)
2019recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℂ)
2115, 20sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑘) ∈ ℂ)
2221ralrimiva 3125 . . . . . . . 8 (𝐴 ∈ ℕ → ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ)
23 fzfi 13913 . . . . . . . . . 10 (1...𝐴) ∈ Fin
2423olci 866 . . . . . . . . 9 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
25 sumss2 15668 . . . . . . . . 9 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2624, 25mpan2 691 . . . . . . . 8 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2714, 22, 26sylancr 587 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2813, 27eqtrd 2764 . . . . . 6 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
293, 28eqtrd 2764 . . . . 5 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
30 elin 3927 . . . . . . . 8 (𝑘 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐴) ∧ 𝑘 ∈ ℙ))
3130baibr 536 . . . . . . 7 (𝑘 ∈ (1...𝐴) → (𝑘 ∈ ℙ ↔ 𝑘 ∈ ((1...𝐴) ∩ ℙ)))
3231ifbid 4508 . . . . . 6 (𝑘 ∈ (1...𝐴) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) = if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
3332sumeq2i 15640 . . . . 5 Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)
3429, 33eqtr4di 2782 . . . 4 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0))
35 eleq1w 2811 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
36 fveq2 6840 . . . . . . . 8 (𝑛 = 𝑘 → (log‘𝑛) = (log‘𝑘))
3735, 36ifbieq1d 4509 . . . . . . 7 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
38 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))
39 fvex 6853 . . . . . . . 8 (log‘𝑘) ∈ V
40 0cn 11142 . . . . . . . . 9 0 ∈ ℂ
4140elexi 3467 . . . . . . . 8 0 ∈ V
4239, 41ifex 4535 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ V
4337, 38, 42fvmpt 6950 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
4417, 43syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
45 elnnuz 12813 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4645biimpi 216 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
47 ifcl 4530 . . . . . 6 (((log‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4820, 40, 47sylancl 586 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4944, 46, 48fsumser 15672 . . . 4 (𝐴 ∈ ℕ → Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5034, 49eqtrd 2764 . . 3 (𝐴 ∈ ℕ → (θ‘𝐴) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5150fveq2d 6844 . 2 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)))
52 addcl 11126 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (𝑘 + 𝑝) ∈ ℂ)
5352adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (𝑘 + 𝑝) ∈ ℂ)
5444, 48eqeltrd 2828 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) ∈ ℂ)
55 efadd 16036 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
5655adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
57 1nn 12173 . . . . . . 7 1 ∈ ℕ
58 ifcl 4530 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 1 ∈ ℕ) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
5917, 57, 58sylancl 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
6059nnrpd 12969 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ+)
6160reeflogd 26509 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))) = if(𝑘 ∈ ℙ, 𝑘, 1))
62 fvif 6856 . . . . . . 7 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1))
63 log1 26470 . . . . . . . 8 (log‘1) = 0
64 ifeq2 4489 . . . . . . . 8 ((log‘1) = 0 → if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
6563, 64ax-mp 5 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6662, 65eqtri 2752 . . . . . 6 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6744, 66eqtr4di 2782 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = (log‘if(𝑘 ∈ ℙ, 𝑘, 1)))
6867fveq2d 6844 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))))
69 id 22 . . . . . . 7 (𝑛 = 𝑘𝑛 = 𝑘)
7035, 69ifbieq1d 4509 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, 𝑛, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
71 prmorcht.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
72 vex 3448 . . . . . . 7 𝑘 ∈ V
7357elexi 3467 . . . . . . 7 1 ∈ V
7472, 73ifex 4535 . . . . . 6 if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
7570, 71, 74fvmpt 6950 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7617, 75syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7761, 68, 763eqtr4d 2774 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (𝐹𝑘))
7853, 54, 46, 56, 77seqhomo 13990 . 2 (𝐴 ∈ ℕ → (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
7951, 78eqtrd 2764 1 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  ifcif 4484  cmpt 5183  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cn 12162  2c2 12217  cz 12505  cuz 12769  [,]cicc 13285  ...cfz 13444  cfl 13728  seqcseq 13942  Σcsu 15628  expce 16003  cprime 16617  logclog 26439  θccht 26977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-prm 16618  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cht 26983
This theorem is referenced by:  chtublem  27098  bposlem6  27176
  Copyright terms: Public domain W3C validator