MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Visualization version   GIF version

Theorem prmorcht 27086
Description: Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
Assertion
Ref Expression
prmorcht (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))

Proof of Theorem prmorcht
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 12135 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 chtval 27018 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
4 2eluzge1 12783 . . . . . . . . . 10 2 ∈ (ℤ‘1)
5 ppisval2 27013 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
61, 4, 5sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
7 nnz 12492 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 flid 13712 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
97, 8syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (⌊‘𝐴) = 𝐴)
109oveq2d 7365 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...(⌊‘𝐴)) = (1...𝐴))
1110ineq1d 4170 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1...(⌊‘𝐴)) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
126, 11eqtrd 2764 . . . . . . . 8 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
1312sumeq1d 15607 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘))
14 inss1 4188 . . . . . . . 8 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
15 elinel1 4152 . . . . . . . . . 10 (𝑘 ∈ ((1...𝐴) ∩ ℙ) → 𝑘 ∈ (1...𝐴))
16 elfznn 13456 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
1716adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℕ)
1817nnrpd 12935 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℝ+)
1918relogcld 26530 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℝ)
2019recnd 11143 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℂ)
2115, 20sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑘) ∈ ℂ)
2221ralrimiva 3121 . . . . . . . 8 (𝐴 ∈ ℕ → ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ)
23 fzfi 13879 . . . . . . . . . 10 (1...𝐴) ∈ Fin
2423olci 866 . . . . . . . . 9 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
25 sumss2 15633 . . . . . . . . 9 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2624, 25mpan2 691 . . . . . . . 8 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2714, 22, 26sylancr 587 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2813, 27eqtrd 2764 . . . . . 6 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
293, 28eqtrd 2764 . . . . 5 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
30 elin 3919 . . . . . . . 8 (𝑘 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐴) ∧ 𝑘 ∈ ℙ))
3130baibr 536 . . . . . . 7 (𝑘 ∈ (1...𝐴) → (𝑘 ∈ ℙ ↔ 𝑘 ∈ ((1...𝐴) ∩ ℙ)))
3231ifbid 4500 . . . . . 6 (𝑘 ∈ (1...𝐴) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) = if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
3332sumeq2i 15605 . . . . 5 Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)
3429, 33eqtr4di 2782 . . . 4 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0))
35 eleq1w 2811 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
36 fveq2 6822 . . . . . . . 8 (𝑛 = 𝑘 → (log‘𝑛) = (log‘𝑘))
3735, 36ifbieq1d 4501 . . . . . . 7 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
38 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))
39 fvex 6835 . . . . . . . 8 (log‘𝑘) ∈ V
40 0cn 11107 . . . . . . . . 9 0 ∈ ℂ
4140elexi 3459 . . . . . . . 8 0 ∈ V
4239, 41ifex 4527 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ V
4337, 38, 42fvmpt 6930 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
4417, 43syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
45 elnnuz 12779 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4645biimpi 216 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
47 ifcl 4522 . . . . . 6 (((log‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4820, 40, 47sylancl 586 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4944, 46, 48fsumser 15637 . . . 4 (𝐴 ∈ ℕ → Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5034, 49eqtrd 2764 . . 3 (𝐴 ∈ ℕ → (θ‘𝐴) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5150fveq2d 6826 . 2 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)))
52 addcl 11091 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (𝑘 + 𝑝) ∈ ℂ)
5352adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (𝑘 + 𝑝) ∈ ℂ)
5444, 48eqeltrd 2828 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) ∈ ℂ)
55 efadd 16001 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
5655adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
57 1nn 12139 . . . . . . 7 1 ∈ ℕ
58 ifcl 4522 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 1 ∈ ℕ) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
5917, 57, 58sylancl 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
6059nnrpd 12935 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ+)
6160reeflogd 26531 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))) = if(𝑘 ∈ ℙ, 𝑘, 1))
62 fvif 6838 . . . . . . 7 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1))
63 log1 26492 . . . . . . . 8 (log‘1) = 0
64 ifeq2 4481 . . . . . . . 8 ((log‘1) = 0 → if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
6563, 64ax-mp 5 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6662, 65eqtri 2752 . . . . . 6 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6744, 66eqtr4di 2782 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = (log‘if(𝑘 ∈ ℙ, 𝑘, 1)))
6867fveq2d 6826 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))))
69 id 22 . . . . . . 7 (𝑛 = 𝑘𝑛 = 𝑘)
7035, 69ifbieq1d 4501 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, 𝑛, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
71 prmorcht.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
72 vex 3440 . . . . . . 7 𝑘 ∈ V
7357elexi 3459 . . . . . . 7 1 ∈ V
7472, 73ifex 4527 . . . . . 6 if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
7570, 71, 74fvmpt 6930 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7617, 75syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7761, 68, 763eqtr4d 2774 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (𝐹𝑘))
7853, 54, 46, 56, 77seqhomo 13956 . 2 (𝐴 ∈ ℕ → (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
7951, 78eqtrd 2764 1 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cin 3902  wss 3903  ifcif 4476  cmpt 5173  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cn 12128  2c2 12183  cz 12471  cuz 12735  [,]cicc 13251  ...cfz 13410  cfl 13694  seqcseq 13908  Σcsu 15593  expce 15968  cprime 16582  logclog 26461  θccht 26999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cht 27005
This theorem is referenced by:  chtublem  27120  bposlem6  27198
  Copyright terms: Public domain W3C validator