MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Visualization version   GIF version

Theorem prmorcht 27095
Description: Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
Assertion
Ref Expression
prmorcht (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))

Proof of Theorem prmorcht
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 12200 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 chtval 27027 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
4 2eluzge1 12848 . . . . . . . . . 10 2 ∈ (ℤ‘1)
5 ppisval2 27022 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
61, 4, 5sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
7 nnz 12557 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 flid 13777 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
97, 8syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (⌊‘𝐴) = 𝐴)
109oveq2d 7406 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...(⌊‘𝐴)) = (1...𝐴))
1110ineq1d 4185 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1...(⌊‘𝐴)) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
126, 11eqtrd 2765 . . . . . . . 8 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
1312sumeq1d 15673 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘))
14 inss1 4203 . . . . . . . 8 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
15 elinel1 4167 . . . . . . . . . 10 (𝑘 ∈ ((1...𝐴) ∩ ℙ) → 𝑘 ∈ (1...𝐴))
16 elfznn 13521 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
1716adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℕ)
1817nnrpd 13000 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℝ+)
1918relogcld 26539 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℝ)
2019recnd 11209 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℂ)
2115, 20sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑘) ∈ ℂ)
2221ralrimiva 3126 . . . . . . . 8 (𝐴 ∈ ℕ → ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ)
23 fzfi 13944 . . . . . . . . . 10 (1...𝐴) ∈ Fin
2423olci 866 . . . . . . . . 9 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
25 sumss2 15699 . . . . . . . . 9 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2624, 25mpan2 691 . . . . . . . 8 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2714, 22, 26sylancr 587 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2813, 27eqtrd 2765 . . . . . 6 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
293, 28eqtrd 2765 . . . . 5 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
30 elin 3933 . . . . . . . 8 (𝑘 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐴) ∧ 𝑘 ∈ ℙ))
3130baibr 536 . . . . . . 7 (𝑘 ∈ (1...𝐴) → (𝑘 ∈ ℙ ↔ 𝑘 ∈ ((1...𝐴) ∩ ℙ)))
3231ifbid 4515 . . . . . 6 (𝑘 ∈ (1...𝐴) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) = if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
3332sumeq2i 15671 . . . . 5 Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)
3429, 33eqtr4di 2783 . . . 4 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0))
35 eleq1w 2812 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
36 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (log‘𝑛) = (log‘𝑘))
3735, 36ifbieq1d 4516 . . . . . . 7 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
38 eqid 2730 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))
39 fvex 6874 . . . . . . . 8 (log‘𝑘) ∈ V
40 0cn 11173 . . . . . . . . 9 0 ∈ ℂ
4140elexi 3473 . . . . . . . 8 0 ∈ V
4239, 41ifex 4542 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ V
4337, 38, 42fvmpt 6971 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
4417, 43syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
45 elnnuz 12844 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4645biimpi 216 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
47 ifcl 4537 . . . . . 6 (((log‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4820, 40, 47sylancl 586 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4944, 46, 48fsumser 15703 . . . 4 (𝐴 ∈ ℕ → Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5034, 49eqtrd 2765 . . 3 (𝐴 ∈ ℕ → (θ‘𝐴) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5150fveq2d 6865 . 2 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)))
52 addcl 11157 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (𝑘 + 𝑝) ∈ ℂ)
5352adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (𝑘 + 𝑝) ∈ ℂ)
5444, 48eqeltrd 2829 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) ∈ ℂ)
55 efadd 16067 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
5655adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
57 1nn 12204 . . . . . . 7 1 ∈ ℕ
58 ifcl 4537 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 1 ∈ ℕ) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
5917, 57, 58sylancl 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
6059nnrpd 13000 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ+)
6160reeflogd 26540 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))) = if(𝑘 ∈ ℙ, 𝑘, 1))
62 fvif 6877 . . . . . . 7 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1))
63 log1 26501 . . . . . . . 8 (log‘1) = 0
64 ifeq2 4496 . . . . . . . 8 ((log‘1) = 0 → if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
6563, 64ax-mp 5 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6662, 65eqtri 2753 . . . . . 6 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6744, 66eqtr4di 2783 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = (log‘if(𝑘 ∈ ℙ, 𝑘, 1)))
6867fveq2d 6865 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))))
69 id 22 . . . . . . 7 (𝑛 = 𝑘𝑛 = 𝑘)
7035, 69ifbieq1d 4516 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, 𝑛, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
71 prmorcht.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
72 vex 3454 . . . . . . 7 𝑘 ∈ V
7357elexi 3473 . . . . . . 7 1 ∈ V
7472, 73ifex 4542 . . . . . 6 if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
7570, 71, 74fvmpt 6971 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7617, 75syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7761, 68, 763eqtr4d 2775 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (𝐹𝑘))
7853, 54, 46, 56, 77seqhomo 14021 . 2 (𝐴 ∈ ℕ → (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
7951, 78eqtrd 2765 1 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917  ifcif 4491  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cn 12193  2c2 12248  cz 12536  cuz 12800  [,]cicc 13316  ...cfz 13475  cfl 13759  seqcseq 13973  Σcsu 15659  expce 16034  cprime 16648  logclog 26470  θccht 27008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-prm 16649  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cht 27014
This theorem is referenced by:  chtublem  27129  bposlem6  27207
  Copyright terms: Public domain W3C validator