![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version |
Description: Example for df-prmo 17066: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
ex-prmo | ⊢ (#p‘;10) = ;;210 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn 12747 | . . . 4 ⊢ ;10 ∈ ℕ | |
2 | prmonn2 17073 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
4 | 10nprm 17148 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
5 | 4 | iffalsei 4541 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
6 | 3, 5 | eqtri 2763 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
7 | 10m1e9 12827 | . . 3 ⊢ (;10 − 1) = 9 | |
8 | 7 | fveq2i 6910 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
9 | 9nn 12362 | . . . . 5 ⊢ 9 ∈ ℕ | |
10 | prmonn2 17073 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
12 | 9nprm 17147 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
13 | 12 | iffalsei 4541 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
14 | 11, 13 | eqtri 2763 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
15 | 9m1e8 12398 | . . . 4 ⊢ (9 − 1) = 8 | |
16 | 15 | fveq2i 6910 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
17 | 8nn 12359 | . . . . . 6 ⊢ 8 ∈ ℕ | |
18 | prmonn2 17073 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
20 | 8nprm 17146 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
21 | 20 | iffalsei 4541 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
22 | 19, 21 | eqtri 2763 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
23 | 8m1e7 12397 | . . . . 5 ⊢ (8 − 1) = 7 | |
24 | 23 | fveq2i 6910 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
25 | 7nn 12356 | . . . . . 6 ⊢ 7 ∈ ℕ | |
26 | prmonn2 17073 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
28 | 7prm 17145 | . . . . . 6 ⊢ 7 ∈ ℙ | |
29 | 28 | iftruei 4538 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
30 | 7nn0 12546 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
31 | 3nn0 12542 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
32 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
33 | 7m1e6 12396 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
34 | 33 | fveq2i 6910 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
35 | prmo6 17164 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
36 | 34, 35 | eqtri 2763 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
37 | 7cn 12358 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
38 | 3cn 12345 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
39 | 7t3e21 12841 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
40 | 37, 38, 39 | mulcomli 11268 | . . . . . 6 ⊢ (3 · 7) = ;21 |
41 | 37 | mul02i 11448 | . . . . . 6 ⊢ (0 · 7) = 0 |
42 | 30, 31, 32, 36, 40, 41 | decmul1 12795 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
43 | 27, 29, 42 | 3eqtri 2767 | . . . 4 ⊢ (#p‘7) = ;;210 |
44 | 22, 24, 43 | 3eqtri 2767 | . . 3 ⊢ (#p‘8) = ;;210 |
45 | 14, 16, 44 | 3eqtri 2767 | . 2 ⊢ (#p‘9) = ;;210 |
46 | 6, 8, 45 | 3eqtri 2767 | 1 ⊢ (#p‘;10) = ;;210 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ifcif 4531 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 · cmul 11158 − cmin 11490 ℕcn 12264 2c2 12319 3c3 12320 6c6 12323 7c7 12324 8c8 12325 9c9 12326 ;cdc 12731 ℙcprime 16705 #pcprmo 17065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-prod 15937 df-dvds 16288 df-prm 16706 df-prmo 17066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |