| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version | ||
| Description: Example for df-prmo 16962: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-prmo | ⊢ (#p‘;10) = ;;210 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn 12625 | . . . 4 ⊢ ;10 ∈ ℕ | |
| 2 | prmonn2 16969 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
| 4 | 10nprm 17043 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
| 5 | 4 | iffalsei 4488 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
| 6 | 3, 5 | eqtri 2752 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
| 7 | 10m1e9 12705 | . . 3 ⊢ (;10 − 1) = 9 | |
| 8 | 7 | fveq2i 6829 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
| 9 | 9nn 12244 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 10 | prmonn2 16969 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
| 12 | 9nprm 17042 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
| 13 | 12 | iffalsei 4488 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
| 14 | 11, 13 | eqtri 2752 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
| 15 | 9m1e8 12275 | . . . 4 ⊢ (9 − 1) = 8 | |
| 16 | 15 | fveq2i 6829 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
| 17 | 8nn 12241 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 18 | prmonn2 16969 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
| 20 | 8nprm 17041 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
| 21 | 20 | iffalsei 4488 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
| 22 | 19, 21 | eqtri 2752 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
| 23 | 8m1e7 12274 | . . . . 5 ⊢ (8 − 1) = 7 | |
| 24 | 23 | fveq2i 6829 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
| 25 | 7nn 12238 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 26 | prmonn2 16969 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
| 28 | 7prm 17040 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 29 | 28 | iftruei 4485 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
| 30 | 7nn0 12424 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 31 | 3nn0 12420 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 32 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 33 | 7m1e6 12273 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
| 34 | 33 | fveq2i 6829 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
| 35 | prmo6 17059 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
| 36 | 34, 35 | eqtri 2752 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
| 37 | 7cn 12240 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 38 | 3cn 12227 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 39 | 7t3e21 12719 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 40 | 37, 38, 39 | mulcomli 11143 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 41 | 37 | mul02i 11323 | . . . . . 6 ⊢ (0 · 7) = 0 |
| 42 | 30, 31, 32, 36, 40, 41 | decmul1 12673 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
| 43 | 27, 29, 42 | 3eqtri 2756 | . . . 4 ⊢ (#p‘7) = ;;210 |
| 44 | 22, 24, 43 | 3eqtri 2756 | . . 3 ⊢ (#p‘8) = ;;210 |
| 45 | 14, 16, 44 | 3eqtri 2756 | . 2 ⊢ (#p‘9) = ;;210 |
| 46 | 6, 8, 45 | 3eqtri 2756 | 1 ⊢ (#p‘;10) = ;;210 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4478 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 · cmul 11033 − cmin 11365 ℕcn 12146 2c2 12201 3c3 12202 6c6 12205 7c7 12206 8c8 12207 9c9 12208 ;cdc 12609 ℙcprime 16600 #pcprmo 16961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-prod 15829 df-dvds 16182 df-prm 16601 df-prmo 16962 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |