| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version | ||
| Description: Example for df-prmo 16941: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-prmo | ⊢ (#p‘;10) = ;;210 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn 12601 | . . . 4 ⊢ ;10 ∈ ℕ | |
| 2 | prmonn2 16948 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
| 4 | 10nprm 17022 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
| 5 | 4 | iffalsei 4485 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
| 6 | 3, 5 | eqtri 2754 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
| 7 | 10m1e9 12681 | . . 3 ⊢ (;10 − 1) = 9 | |
| 8 | 7 | fveq2i 6825 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
| 9 | 9nn 12220 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 10 | prmonn2 16948 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
| 12 | 9nprm 17021 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
| 13 | 12 | iffalsei 4485 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
| 14 | 11, 13 | eqtri 2754 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
| 15 | 9m1e8 12251 | . . . 4 ⊢ (9 − 1) = 8 | |
| 16 | 15 | fveq2i 6825 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
| 17 | 8nn 12217 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 18 | prmonn2 16948 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
| 20 | 8nprm 17020 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
| 21 | 20 | iffalsei 4485 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
| 22 | 19, 21 | eqtri 2754 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
| 23 | 8m1e7 12250 | . . . . 5 ⊢ (8 − 1) = 7 | |
| 24 | 23 | fveq2i 6825 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
| 25 | 7nn 12214 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 26 | prmonn2 16948 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
| 28 | 7prm 17019 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 29 | 28 | iftruei 4482 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
| 30 | 7nn0 12400 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 31 | 3nn0 12396 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 32 | 0nn0 12393 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 33 | 7m1e6 12249 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
| 34 | 33 | fveq2i 6825 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
| 35 | prmo6 17038 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
| 36 | 34, 35 | eqtri 2754 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
| 37 | 7cn 12216 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 38 | 3cn 12203 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 39 | 7t3e21 12695 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 40 | 37, 38, 39 | mulcomli 11118 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 41 | 37 | mul02i 11299 | . . . . . 6 ⊢ (0 · 7) = 0 |
| 42 | 30, 31, 32, 36, 40, 41 | decmul1 12649 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
| 43 | 27, 29, 42 | 3eqtri 2758 | . . . 4 ⊢ (#p‘7) = ;;210 |
| 44 | 22, 24, 43 | 3eqtri 2758 | . . 3 ⊢ (#p‘8) = ;;210 |
| 45 | 14, 16, 44 | 3eqtri 2758 | . 2 ⊢ (#p‘9) = ;;210 |
| 46 | 6, 8, 45 | 3eqtri 2758 | 1 ⊢ (#p‘;10) = ;;210 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ifcif 4475 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 · cmul 11008 − cmin 11341 ℕcn 12122 2c2 12177 3c3 12178 6c6 12181 7c7 12182 8c8 12183 9c9 12184 ;cdc 12585 ℙcprime 16579 #pcprmo 16940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-prod 15808 df-dvds 16161 df-prm 16580 df-prmo 16941 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |