| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version | ||
| Description: Example for df-prmo 17010: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-prmo | ⊢ (#p‘;10) = ;;210 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn 12672 | . . . 4 ⊢ ;10 ∈ ℕ | |
| 2 | prmonn2 17017 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
| 4 | 10nprm 17091 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
| 5 | 4 | iffalsei 4501 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
| 6 | 3, 5 | eqtri 2753 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
| 7 | 10m1e9 12752 | . . 3 ⊢ (;10 − 1) = 9 | |
| 8 | 7 | fveq2i 6864 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
| 9 | 9nn 12291 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 10 | prmonn2 17017 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
| 12 | 9nprm 17090 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
| 13 | 12 | iffalsei 4501 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
| 14 | 11, 13 | eqtri 2753 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
| 15 | 9m1e8 12322 | . . . 4 ⊢ (9 − 1) = 8 | |
| 16 | 15 | fveq2i 6864 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
| 17 | 8nn 12288 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 18 | prmonn2 17017 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
| 20 | 8nprm 17089 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
| 21 | 20 | iffalsei 4501 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
| 22 | 19, 21 | eqtri 2753 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
| 23 | 8m1e7 12321 | . . . . 5 ⊢ (8 − 1) = 7 | |
| 24 | 23 | fveq2i 6864 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
| 25 | 7nn 12285 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 26 | prmonn2 17017 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
| 28 | 7prm 17088 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 29 | 28 | iftruei 4498 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
| 30 | 7nn0 12471 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 31 | 3nn0 12467 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 32 | 0nn0 12464 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 33 | 7m1e6 12320 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
| 34 | 33 | fveq2i 6864 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
| 35 | prmo6 17107 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
| 36 | 34, 35 | eqtri 2753 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
| 37 | 7cn 12287 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 38 | 3cn 12274 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 39 | 7t3e21 12766 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 40 | 37, 38, 39 | mulcomli 11190 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 41 | 37 | mul02i 11370 | . . . . . 6 ⊢ (0 · 7) = 0 |
| 42 | 30, 31, 32, 36, 40, 41 | decmul1 12720 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
| 43 | 27, 29, 42 | 3eqtri 2757 | . . . 4 ⊢ (#p‘7) = ;;210 |
| 44 | 22, 24, 43 | 3eqtri 2757 | . . 3 ⊢ (#p‘8) = ;;210 |
| 45 | 14, 16, 44 | 3eqtri 2757 | . 2 ⊢ (#p‘9) = ;;210 |
| 46 | 6, 8, 45 | 3eqtri 2757 | 1 ⊢ (#p‘;10) = ;;210 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4491 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 · cmul 11080 − cmin 11412 ℕcn 12193 2c2 12248 3c3 12249 6c6 12252 7c7 12253 8c8 12254 9c9 12255 ;cdc 12656 ℙcprime 16648 #pcprmo 17009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-dvds 16230 df-prm 16649 df-prmo 17010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |