![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version |
Description: Example for df-prmo 16971: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
ex-prmo | ⊢ (#p‘;10) = ;;210 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn 12694 | . . . 4 ⊢ ;10 ∈ ℕ | |
2 | prmonn2 16978 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
4 | 10nprm 17053 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
5 | 4 | iffalsei 4533 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
6 | 3, 5 | eqtri 2754 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
7 | 10m1e9 12774 | . . 3 ⊢ (;10 − 1) = 9 | |
8 | 7 | fveq2i 6887 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
9 | 9nn 12311 | . . . . 5 ⊢ 9 ∈ ℕ | |
10 | prmonn2 16978 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
12 | 9nprm 17052 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
13 | 12 | iffalsei 4533 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
14 | 11, 13 | eqtri 2754 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
15 | 9m1e8 12347 | . . . 4 ⊢ (9 − 1) = 8 | |
16 | 15 | fveq2i 6887 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
17 | 8nn 12308 | . . . . . 6 ⊢ 8 ∈ ℕ | |
18 | prmonn2 16978 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
20 | 8nprm 17051 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
21 | 20 | iffalsei 4533 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
22 | 19, 21 | eqtri 2754 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
23 | 8m1e7 12346 | . . . . 5 ⊢ (8 − 1) = 7 | |
24 | 23 | fveq2i 6887 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
25 | 7nn 12305 | . . . . . 6 ⊢ 7 ∈ ℕ | |
26 | prmonn2 16978 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
28 | 7prm 17050 | . . . . . 6 ⊢ 7 ∈ ℙ | |
29 | 28 | iftruei 4530 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
30 | 7nn0 12495 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
31 | 3nn0 12491 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
32 | 0nn0 12488 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
33 | 7m1e6 12345 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
34 | 33 | fveq2i 6887 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
35 | prmo6 17069 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
36 | 34, 35 | eqtri 2754 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
37 | 7cn 12307 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
38 | 3cn 12294 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
39 | 7t3e21 12788 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
40 | 37, 38, 39 | mulcomli 11224 | . . . . . 6 ⊢ (3 · 7) = ;21 |
41 | 37 | mul02i 11404 | . . . . . 6 ⊢ (0 · 7) = 0 |
42 | 30, 31, 32, 36, 40, 41 | decmul1 12742 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
43 | 27, 29, 42 | 3eqtri 2758 | . . . 4 ⊢ (#p‘7) = ;;210 |
44 | 22, 24, 43 | 3eqtri 2758 | . . 3 ⊢ (#p‘8) = ;;210 |
45 | 14, 16, 44 | 3eqtri 2758 | . 2 ⊢ (#p‘9) = ;;210 |
46 | 6, 8, 45 | 3eqtri 2758 | 1 ⊢ (#p‘;10) = ;;210 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ifcif 4523 ‘cfv 6536 (class class class)co 7404 0cc0 11109 1c1 11110 · cmul 11114 − cmin 11445 ℕcn 12213 2c2 12268 3c3 12269 6c6 12272 7c7 12273 8c8 12274 9c9 12275 ;cdc 12678 ℙcprime 16612 #pcprmo 16970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-seq 13970 df-exp 14030 df-hash 14293 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-clim 15435 df-prod 15853 df-dvds 16202 df-prm 16613 df-prmo 16971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |