Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version |
Description: Example for df-prmo 16661: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
ex-prmo | ⊢ (#p‘;10) = ;;210 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn 12382 | . . . 4 ⊢ ;10 ∈ ℕ | |
2 | prmonn2 16668 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
4 | 10nprm 16743 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
5 | 4 | iffalsei 4466 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
6 | 3, 5 | eqtri 2766 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
7 | 10m1e9 12462 | . . 3 ⊢ (;10 − 1) = 9 | |
8 | 7 | fveq2i 6759 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
9 | 9nn 12001 | . . . . 5 ⊢ 9 ∈ ℕ | |
10 | prmonn2 16668 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
12 | 9nprm 16742 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
13 | 12 | iffalsei 4466 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
14 | 11, 13 | eqtri 2766 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
15 | 9m1e8 12037 | . . . 4 ⊢ (9 − 1) = 8 | |
16 | 15 | fveq2i 6759 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
17 | 8nn 11998 | . . . . . 6 ⊢ 8 ∈ ℕ | |
18 | prmonn2 16668 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
20 | 8nprm 16741 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
21 | 20 | iffalsei 4466 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
22 | 19, 21 | eqtri 2766 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
23 | 8m1e7 12036 | . . . . 5 ⊢ (8 − 1) = 7 | |
24 | 23 | fveq2i 6759 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
25 | 7nn 11995 | . . . . . 6 ⊢ 7 ∈ ℕ | |
26 | prmonn2 16668 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
28 | 7prm 16740 | . . . . . 6 ⊢ 7 ∈ ℙ | |
29 | 28 | iftruei 4463 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
30 | 7nn0 12185 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
31 | 3nn0 12181 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
32 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
33 | 7m1e6 12035 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
34 | 33 | fveq2i 6759 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
35 | prmo6 16759 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
36 | 34, 35 | eqtri 2766 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
37 | 7cn 11997 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
38 | 3cn 11984 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
39 | 7t3e21 12476 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
40 | 37, 38, 39 | mulcomli 10915 | . . . . . 6 ⊢ (3 · 7) = ;21 |
41 | 37 | mul02i 11094 | . . . . . 6 ⊢ (0 · 7) = 0 |
42 | 30, 31, 32, 36, 40, 41 | decmul1 12430 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
43 | 27, 29, 42 | 3eqtri 2770 | . . . 4 ⊢ (#p‘7) = ;;210 |
44 | 22, 24, 43 | 3eqtri 2770 | . . 3 ⊢ (#p‘8) = ;;210 |
45 | 14, 16, 44 | 3eqtri 2770 | . 2 ⊢ (#p‘9) = ;;210 |
46 | 6, 8, 45 | 3eqtri 2770 | 1 ⊢ (#p‘;10) = ;;210 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ifcif 4456 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 − cmin 11135 ℕcn 11903 2c2 11958 3c3 11959 6c6 11962 7c7 11963 8c8 11964 9c9 11965 ;cdc 12366 ℙcprime 16304 #pcprmo 16660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 df-dvds 15892 df-prm 16305 df-prmo 16661 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |