![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version |
Description: Example for df-prmo 17079: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
ex-prmo | ⊢ (#p‘;10) = ;;210 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn 12774 | . . . 4 ⊢ ;10 ∈ ℕ | |
2 | prmonn2 17086 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
4 | 10nprm 17161 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
5 | 4 | iffalsei 4558 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
6 | 3, 5 | eqtri 2768 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
7 | 10m1e9 12854 | . . 3 ⊢ (;10 − 1) = 9 | |
8 | 7 | fveq2i 6923 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
9 | 9nn 12391 | . . . . 5 ⊢ 9 ∈ ℕ | |
10 | prmonn2 17086 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
12 | 9nprm 17160 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
13 | 12 | iffalsei 4558 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
14 | 11, 13 | eqtri 2768 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
15 | 9m1e8 12427 | . . . 4 ⊢ (9 − 1) = 8 | |
16 | 15 | fveq2i 6923 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
17 | 8nn 12388 | . . . . . 6 ⊢ 8 ∈ ℕ | |
18 | prmonn2 17086 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
20 | 8nprm 17159 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
21 | 20 | iffalsei 4558 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
22 | 19, 21 | eqtri 2768 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
23 | 8m1e7 12426 | . . . . 5 ⊢ (8 − 1) = 7 | |
24 | 23 | fveq2i 6923 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
25 | 7nn 12385 | . . . . . 6 ⊢ 7 ∈ ℕ | |
26 | prmonn2 17086 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
28 | 7prm 17158 | . . . . . 6 ⊢ 7 ∈ ℙ | |
29 | 28 | iftruei 4555 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
30 | 7nn0 12575 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
31 | 3nn0 12571 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
32 | 0nn0 12568 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
33 | 7m1e6 12425 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
34 | 33 | fveq2i 6923 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
35 | prmo6 17177 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
36 | 34, 35 | eqtri 2768 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
37 | 7cn 12387 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
38 | 3cn 12374 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
39 | 7t3e21 12868 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
40 | 37, 38, 39 | mulcomli 11299 | . . . . . 6 ⊢ (3 · 7) = ;21 |
41 | 37 | mul02i 11479 | . . . . . 6 ⊢ (0 · 7) = 0 |
42 | 30, 31, 32, 36, 40, 41 | decmul1 12822 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
43 | 27, 29, 42 | 3eqtri 2772 | . . . 4 ⊢ (#p‘7) = ;;210 |
44 | 22, 24, 43 | 3eqtri 2772 | . . 3 ⊢ (#p‘8) = ;;210 |
45 | 14, 16, 44 | 3eqtri 2772 | . 2 ⊢ (#p‘9) = ;;210 |
46 | 6, 8, 45 | 3eqtri 2772 | 1 ⊢ (#p‘;10) = ;;210 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ifcif 4548 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 · cmul 11189 − cmin 11520 ℕcn 12293 2c2 12348 3c3 12349 6c6 12352 7c7 12353 8c8 12354 9c9 12355 ;cdc 12758 ℙcprime 16718 #pcprmo 17078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-dvds 16303 df-prm 16719 df-prmo 17079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |