![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version |
Description: Example for df-prmo 16964: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
ex-prmo | ⊢ (#p‘;10) = ;;210 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn 12692 | . . . 4 ⊢ ;10 ∈ ℕ | |
2 | prmonn2 16971 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
4 | 10nprm 17046 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
5 | 4 | iffalsei 4538 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
6 | 3, 5 | eqtri 2760 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
7 | 10m1e9 12772 | . . 3 ⊢ (;10 − 1) = 9 | |
8 | 7 | fveq2i 6894 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
9 | 9nn 12309 | . . . . 5 ⊢ 9 ∈ ℕ | |
10 | prmonn2 16971 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
12 | 9nprm 17045 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
13 | 12 | iffalsei 4538 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
14 | 11, 13 | eqtri 2760 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
15 | 9m1e8 12345 | . . . 4 ⊢ (9 − 1) = 8 | |
16 | 15 | fveq2i 6894 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
17 | 8nn 12306 | . . . . . 6 ⊢ 8 ∈ ℕ | |
18 | prmonn2 16971 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
20 | 8nprm 17044 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
21 | 20 | iffalsei 4538 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
22 | 19, 21 | eqtri 2760 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
23 | 8m1e7 12344 | . . . . 5 ⊢ (8 − 1) = 7 | |
24 | 23 | fveq2i 6894 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
25 | 7nn 12303 | . . . . . 6 ⊢ 7 ∈ ℕ | |
26 | prmonn2 16971 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
28 | 7prm 17043 | . . . . . 6 ⊢ 7 ∈ ℙ | |
29 | 28 | iftruei 4535 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
30 | 7nn0 12493 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
31 | 3nn0 12489 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
32 | 0nn0 12486 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
33 | 7m1e6 12343 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
34 | 33 | fveq2i 6894 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
35 | prmo6 17062 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
36 | 34, 35 | eqtri 2760 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
37 | 7cn 12305 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
38 | 3cn 12292 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
39 | 7t3e21 12786 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
40 | 37, 38, 39 | mulcomli 11222 | . . . . . 6 ⊢ (3 · 7) = ;21 |
41 | 37 | mul02i 11402 | . . . . . 6 ⊢ (0 · 7) = 0 |
42 | 30, 31, 32, 36, 40, 41 | decmul1 12740 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
43 | 27, 29, 42 | 3eqtri 2764 | . . . 4 ⊢ (#p‘7) = ;;210 |
44 | 22, 24, 43 | 3eqtri 2764 | . . 3 ⊢ (#p‘8) = ;;210 |
45 | 14, 16, 44 | 3eqtri 2764 | . 2 ⊢ (#p‘9) = ;;210 |
46 | 6, 8, 45 | 3eqtri 2764 | 1 ⊢ (#p‘;10) = ;;210 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ifcif 4528 ‘cfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 · cmul 11114 − cmin 11443 ℕcn 12211 2c2 12266 3c3 12267 6c6 12270 7c7 12271 8c8 12272 9c9 12273 ;cdc 12676 ℙcprime 16607 #pcprmo 16963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-prod 15849 df-dvds 16197 df-prm 16608 df-prmo 16964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |