| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version | ||
| Description: Example for df-prmo 17003: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-prmo | ⊢ (#p‘;10) = ;;210 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn 12665 | . . . 4 ⊢ ;10 ∈ ℕ | |
| 2 | prmonn2 17010 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
| 4 | 10nprm 17084 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
| 5 | 4 | iffalsei 4498 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
| 6 | 3, 5 | eqtri 2752 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
| 7 | 10m1e9 12745 | . . 3 ⊢ (;10 − 1) = 9 | |
| 8 | 7 | fveq2i 6861 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
| 9 | 9nn 12284 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 10 | prmonn2 17010 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
| 12 | 9nprm 17083 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
| 13 | 12 | iffalsei 4498 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
| 14 | 11, 13 | eqtri 2752 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
| 15 | 9m1e8 12315 | . . . 4 ⊢ (9 − 1) = 8 | |
| 16 | 15 | fveq2i 6861 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
| 17 | 8nn 12281 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 18 | prmonn2 17010 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
| 20 | 8nprm 17082 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
| 21 | 20 | iffalsei 4498 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
| 22 | 19, 21 | eqtri 2752 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
| 23 | 8m1e7 12314 | . . . . 5 ⊢ (8 − 1) = 7 | |
| 24 | 23 | fveq2i 6861 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
| 25 | 7nn 12278 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 26 | prmonn2 17010 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
| 28 | 7prm 17081 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 29 | 28 | iftruei 4495 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
| 30 | 7nn0 12464 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 31 | 3nn0 12460 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 32 | 0nn0 12457 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 33 | 7m1e6 12313 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
| 34 | 33 | fveq2i 6861 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
| 35 | prmo6 17100 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
| 36 | 34, 35 | eqtri 2752 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
| 37 | 7cn 12280 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 38 | 3cn 12267 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 39 | 7t3e21 12759 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 40 | 37, 38, 39 | mulcomli 11183 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 41 | 37 | mul02i 11363 | . . . . . 6 ⊢ (0 · 7) = 0 |
| 42 | 30, 31, 32, 36, 40, 41 | decmul1 12713 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
| 43 | 27, 29, 42 | 3eqtri 2756 | . . . 4 ⊢ (#p‘7) = ;;210 |
| 44 | 22, 24, 43 | 3eqtri 2756 | . . 3 ⊢ (#p‘8) = ;;210 |
| 45 | 14, 16, 44 | 3eqtri 2756 | . 2 ⊢ (#p‘9) = ;;210 |
| 46 | 6, 8, 45 | 3eqtri 2756 | 1 ⊢ (#p‘;10) = ;;210 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4488 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 · cmul 11073 − cmin 11405 ℕcn 12186 2c2 12241 3c3 12242 6c6 12245 7c7 12246 8c8 12247 9c9 12248 ;cdc 12649 ℙcprime 16641 #pcprmo 17002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 df-prm 16642 df-prmo 17003 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |