| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-prmo | Structured version Visualization version GIF version | ||
| Description: Example for df-prmo 17052: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-prmo | ⊢ (#p‘;10) = ;;210 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn 12724 | . . . 4 ⊢ ;10 ∈ ℕ | |
| 2 | prmonn2 17059 | . . . 4 ⊢ (;10 ∈ ℕ → (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (#p‘;10) = if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) |
| 4 | 10nprm 17133 | . . . 4 ⊢ ¬ ;10 ∈ ℙ | |
| 5 | 4 | iffalsei 4510 | . . 3 ⊢ if(;10 ∈ ℙ, ((#p‘(;10 − 1)) · ;10), (#p‘(;10 − 1))) = (#p‘(;10 − 1)) |
| 6 | 3, 5 | eqtri 2758 | . 2 ⊢ (#p‘;10) = (#p‘(;10 − 1)) |
| 7 | 10m1e9 12804 | . . 3 ⊢ (;10 − 1) = 9 | |
| 8 | 7 | fveq2i 6879 | . 2 ⊢ (#p‘(;10 − 1)) = (#p‘9) |
| 9 | 9nn 12338 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 10 | prmonn2 17059 | . . . . 5 ⊢ (9 ∈ ℕ → (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1)))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (#p‘9) = if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) |
| 12 | 9nprm 17132 | . . . . 5 ⊢ ¬ 9 ∈ ℙ | |
| 13 | 12 | iffalsei 4510 | . . . 4 ⊢ if(9 ∈ ℙ, ((#p‘(9 − 1)) · 9), (#p‘(9 − 1))) = (#p‘(9 − 1)) |
| 14 | 11, 13 | eqtri 2758 | . . 3 ⊢ (#p‘9) = (#p‘(9 − 1)) |
| 15 | 9m1e8 12374 | . . . 4 ⊢ (9 − 1) = 8 | |
| 16 | 15 | fveq2i 6879 | . . 3 ⊢ (#p‘(9 − 1)) = (#p‘8) |
| 17 | 8nn 12335 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 18 | prmonn2 17059 | . . . . . 6 ⊢ (8 ∈ ℕ → (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1)))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (#p‘8) = if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) |
| 20 | 8nprm 17131 | . . . . . 6 ⊢ ¬ 8 ∈ ℙ | |
| 21 | 20 | iffalsei 4510 | . . . . 5 ⊢ if(8 ∈ ℙ, ((#p‘(8 − 1)) · 8), (#p‘(8 − 1))) = (#p‘(8 − 1)) |
| 22 | 19, 21 | eqtri 2758 | . . . 4 ⊢ (#p‘8) = (#p‘(8 − 1)) |
| 23 | 8m1e7 12373 | . . . . 5 ⊢ (8 − 1) = 7 | |
| 24 | 23 | fveq2i 6879 | . . . 4 ⊢ (#p‘(8 − 1)) = (#p‘7) |
| 25 | 7nn 12332 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 26 | prmonn2 17059 | . . . . . 6 ⊢ (7 ∈ ℕ → (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1)))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (#p‘7) = if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) |
| 28 | 7prm 17130 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 29 | 28 | iftruei 4507 | . . . . 5 ⊢ if(7 ∈ ℙ, ((#p‘(7 − 1)) · 7), (#p‘(7 − 1))) = ((#p‘(7 − 1)) · 7) |
| 30 | 7nn0 12523 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 31 | 3nn0 12519 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 32 | 0nn0 12516 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 33 | 7m1e6 12372 | . . . . . . . 8 ⊢ (7 − 1) = 6 | |
| 34 | 33 | fveq2i 6879 | . . . . . . 7 ⊢ (#p‘(7 − 1)) = (#p‘6) |
| 35 | prmo6 17149 | . . . . . . 7 ⊢ (#p‘6) = ;30 | |
| 36 | 34, 35 | eqtri 2758 | . . . . . 6 ⊢ (#p‘(7 − 1)) = ;30 |
| 37 | 7cn 12334 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 38 | 3cn 12321 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 39 | 7t3e21 12818 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 40 | 37, 38, 39 | mulcomli 11244 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 41 | 37 | mul02i 11424 | . . . . . 6 ⊢ (0 · 7) = 0 |
| 42 | 30, 31, 32, 36, 40, 41 | decmul1 12772 | . . . . 5 ⊢ ((#p‘(7 − 1)) · 7) = ;;210 |
| 43 | 27, 29, 42 | 3eqtri 2762 | . . . 4 ⊢ (#p‘7) = ;;210 |
| 44 | 22, 24, 43 | 3eqtri 2762 | . . 3 ⊢ (#p‘8) = ;;210 |
| 45 | 14, 16, 44 | 3eqtri 2762 | . 2 ⊢ (#p‘9) = ;;210 |
| 46 | 6, 8, 45 | 3eqtri 2762 | 1 ⊢ (#p‘;10) = ;;210 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ifcif 4500 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 · cmul 11134 − cmin 11466 ℕcn 12240 2c2 12295 3c3 12296 6c6 12299 7c7 12300 8c8 12301 9c9 12302 ;cdc 12708 ℙcprime 16690 #pcprmo 17051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-prod 15920 df-dvds 16273 df-prm 16691 df-prmo 17052 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |