Detailed syntax breakdown of Definition df-psgn
| Step | Hyp | Ref
| Expression |
| 1 | | cpsgn 19507 |
. 2
class
pmSgn |
| 2 | | vd |
. . 3
setvar 𝑑 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | vp |
. . . . . . . . 9
setvar 𝑝 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 7 | | cid 5577 |
. . . . . . . 8
class
I |
| 8 | 6, 7 | cdif 3948 |
. . . . . . 7
class (𝑝 ∖ I ) |
| 9 | 8 | cdm 5685 |
. . . . . 6
class dom
(𝑝 ∖ I
) |
| 10 | | cfn 8985 |
. . . . . 6
class
Fin |
| 11 | 9, 10 | wcel 2108 |
. . . . 5
wff dom (𝑝 ∖ I ) ∈
Fin |
| 12 | 2 | cv 1539 |
. . . . . . 7
class 𝑑 |
| 13 | | csymg 19386 |
. . . . . . 7
class
SymGrp |
| 14 | 12, 13 | cfv 6561 |
. . . . . 6
class
(SymGrp‘𝑑) |
| 15 | | cbs 17247 |
. . . . . 6
class
Base |
| 16 | 14, 15 | cfv 6561 |
. . . . 5
class
(Base‘(SymGrp‘𝑑)) |
| 17 | 11, 5, 16 | crab 3436 |
. . . 4
class {𝑝 ∈
(Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} |
| 18 | 4 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 19 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
| 20 | 19 | cv 1539 |
. . . . . . . . 9
class 𝑤 |
| 21 | | cgsu 17485 |
. . . . . . . . 9
class
Σg |
| 22 | 14, 20, 21 | co 7431 |
. . . . . . . 8
class
((SymGrp‘𝑑)
Σg 𝑤) |
| 23 | 18, 22 | wceq 1540 |
. . . . . . 7
wff 𝑥 = ((SymGrp‘𝑑) Σg
𝑤) |
| 24 | | vs |
. . . . . . . . 9
setvar 𝑠 |
| 25 | 24 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 26 | | c1 11156 |
. . . . . . . . . 10
class
1 |
| 27 | 26 | cneg 11493 |
. . . . . . . . 9
class
-1 |
| 28 | | chash 14369 |
. . . . . . . . . 10
class
♯ |
| 29 | 20, 28 | cfv 6561 |
. . . . . . . . 9
class
(♯‘𝑤) |
| 30 | | cexp 14102 |
. . . . . . . . 9
class
↑ |
| 31 | 27, 29, 30 | co 7431 |
. . . . . . . 8
class
(-1↑(♯‘𝑤)) |
| 32 | 25, 31 | wceq 1540 |
. . . . . . 7
wff 𝑠 = (-1↑(♯‘𝑤)) |
| 33 | 23, 32 | wa 395 |
. . . . . 6
wff (𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) |
| 34 | | cpmtr 19459 |
. . . . . . . . 9
class
pmTrsp |
| 35 | 12, 34 | cfv 6561 |
. . . . . . . 8
class
(pmTrsp‘𝑑) |
| 36 | 35 | crn 5686 |
. . . . . . 7
class ran
(pmTrsp‘𝑑) |
| 37 | 36 | cword 14552 |
. . . . . 6
class Word ran
(pmTrsp‘𝑑) |
| 38 | 33, 19, 37 | wrex 3070 |
. . . . 5
wff
∃𝑤 ∈ Word
ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) |
| 39 | 38, 24 | cio 6512 |
. . . 4
class
(℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
| 40 | 4, 17, 39 | cmpt 5225 |
. . 3
class (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 41 | 2, 3, 40 | cmpt 5225 |
. 2
class (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| 42 | 1, 41 | wceq 1540 |
1
wff pmSgn =
(𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |