MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfval Structured version   Visualization version   GIF version

Theorem psgnfval 19368
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfval.g 𝐺 = (SymGrp‘𝐷)
psgnfval.b 𝐵 = (Base‘𝐺)
psgnfval.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfval 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑠,𝑝,𝑤,𝑥   𝐷,𝑠,𝑤,𝑥   𝑥,𝐹   𝑤,𝑇   𝐵,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑠)   𝐷(𝑝)   𝑇(𝑥,𝑠,𝑝)   𝐹(𝑤,𝑠,𝑝)   𝐺(𝑥,𝑤,𝑠,𝑝)   𝑁(𝑥,𝑤,𝑠,𝑝)

Proof of Theorem psgnfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 psgnfval.n . 2 𝑁 = (pmSgn‘𝐷)
2 fveq2 6892 . . . . . . . . . 10 (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷))
3 psgnfval.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
42, 3eqtr4di 2791 . . . . . . . . 9 (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺)
54fveq2d 6896 . . . . . . . 8 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺))
6 psgnfval.b . . . . . . . 8 𝐵 = (Base‘𝐺)
75, 6eqtr4di 2791 . . . . . . 7 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵)
8 rabeq 3447 . . . . . . 7 ((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
97, 8syl 17 . . . . . 6 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
10 psgnfval.f . . . . . 6 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
119, 10eqtr4di 2791 . . . . 5 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹)
12 fveq2 6892 . . . . . . . . . 10 (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷))
1312rneqd 5938 . . . . . . . . 9 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷))
14 psgnfval.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘𝐷)
1513, 14eqtr4di 2791 . . . . . . . 8 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇)
16 wrdeq 14486 . . . . . . . 8 (ran (pmTrsp‘𝑑) = 𝑇 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
1715, 16syl 17 . . . . . . 7 (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
184oveq1d 7424 . . . . . . . . 9 (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤))
1918eqeq2d 2744 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤)))
2019anbi1d 631 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2117, 20rexeqbidv 3344 . . . . . 6 (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2221iotabidv 6528 . . . . 5 (𝑑 = 𝐷 → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2311, 22mpteq12dv 5240 . . . 4 (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
24 df-psgn 19359 . . . 4 pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
256fvexi 6906 . . . . . 6 𝐵 ∈ V
2610, 25rabex2 5335 . . . . 5 𝐹 ∈ V
2726mptex 7225 . . . 4 (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) ∈ V
2823, 24, 27fvmpt 6999 . . 3 (𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
29 fvprc 6884 . . . 4 𝐷 ∈ V → (pmSgn‘𝐷) = ∅)
30 fvprc 6884 . . . . . . . . . . . . 13 𝐷 ∈ V → (SymGrp‘𝐷) = ∅)
313, 30eqtrid 2785 . . . . . . . . . . . 12 𝐷 ∈ V → 𝐺 = ∅)
3231fveq2d 6896 . . . . . . . . . . 11 𝐷 ∈ V → (Base‘𝐺) = (Base‘∅))
33 base0 17149 . . . . . . . . . . 11 ∅ = (Base‘∅)
3432, 33eqtr4di 2791 . . . . . . . . . 10 𝐷 ∈ V → (Base‘𝐺) = ∅)
356, 34eqtrid 2785 . . . . . . . . 9 𝐷 ∈ V → 𝐵 = ∅)
36 rabeq 3447 . . . . . . . . 9 (𝐵 = ∅ → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
3735, 36syl 17 . . . . . . . 8 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
38 rab0 4383 . . . . . . . 8 {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅
3937, 38eqtrdi 2789 . . . . . . 7 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅)
4010, 39eqtrid 2785 . . . . . 6 𝐷 ∈ V → 𝐹 = ∅)
4140mpteq1d 5244 . . . . 5 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
42 mpt0 6693 . . . . 5 (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅
4341, 42eqtrdi 2789 . . . 4 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅)
4429, 43eqtr4d 2776 . . 3 𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
4528, 44pm2.61i 182 . 2 (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
461, 45eqtri 2761 1 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  wcel 2107  wrex 3071  {crab 3433  Vcvv 3475  cdif 3946  c0 4323  cmpt 5232   I cid 5574  dom cdm 5677  ran crn 5678  cio 6494  cfv 6544  (class class class)co 7409  Fincfn 8939  1c1 11111  -cneg 11445  cexp 14027  chash 14290  Word cword 14464  Basecbs 17144   Σg cgsu 17386  SymGrpcsymg 19234  pmTrspcpmtr 19309  pmSgncpsgn 19357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-slot 17115  df-ndx 17127  df-base 17145  df-psgn 19359
This theorem is referenced by:  psgnfn  19369  psgnval  19375  psgnfvalfi  19381
  Copyright terms: Public domain W3C validator