MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfval Structured version   Visualization version   GIF version

Theorem psgnfval 19397
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfval.g 𝐺 = (SymGrp‘𝐷)
psgnfval.b 𝐵 = (Base‘𝐺)
psgnfval.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfval 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑠,𝑝,𝑤,𝑥   𝐷,𝑠,𝑤,𝑥   𝑥,𝐹   𝑤,𝑇   𝐵,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑠)   𝐷(𝑝)   𝑇(𝑥,𝑠,𝑝)   𝐹(𝑤,𝑠,𝑝)   𝐺(𝑥,𝑤,𝑠,𝑝)   𝑁(𝑥,𝑤,𝑠,𝑝)

Proof of Theorem psgnfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 psgnfval.n . 2 𝑁 = (pmSgn‘𝐷)
2 fveq2 6826 . . . . . . . . . 10 (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷))
3 psgnfval.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
42, 3eqtr4di 2782 . . . . . . . . 9 (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺)
54fveq2d 6830 . . . . . . . 8 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺))
6 psgnfval.b . . . . . . . 8 𝐵 = (Base‘𝐺)
75, 6eqtr4di 2782 . . . . . . 7 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵)
8 rabeq 3411 . . . . . . 7 ((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
97, 8syl 17 . . . . . 6 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
10 psgnfval.f . . . . . 6 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
119, 10eqtr4di 2782 . . . . 5 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹)
12 fveq2 6826 . . . . . . . . . 10 (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷))
1312rneqd 5884 . . . . . . . . 9 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷))
14 psgnfval.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘𝐷)
1513, 14eqtr4di 2782 . . . . . . . 8 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇)
16 wrdeq 14461 . . . . . . . 8 (ran (pmTrsp‘𝑑) = 𝑇 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
1715, 16syl 17 . . . . . . 7 (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
184oveq1d 7368 . . . . . . . . 9 (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤))
1918eqeq2d 2740 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤)))
2019anbi1d 631 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2117, 20rexeqbidv 3311 . . . . . 6 (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2221iotabidv 6470 . . . . 5 (𝑑 = 𝐷 → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2311, 22mpteq12dv 5182 . . . 4 (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
24 df-psgn 19388 . . . 4 pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
256fvexi 6840 . . . . . 6 𝐵 ∈ V
2610, 25rabex2 5283 . . . . 5 𝐹 ∈ V
2726mptex 7163 . . . 4 (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) ∈ V
2823, 24, 27fvmpt 6934 . . 3 (𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
29 fvprc 6818 . . . 4 𝐷 ∈ V → (pmSgn‘𝐷) = ∅)
30 fvprc 6818 . . . . . . . . . . . . 13 𝐷 ∈ V → (SymGrp‘𝐷) = ∅)
313, 30eqtrid 2776 . . . . . . . . . . . 12 𝐷 ∈ V → 𝐺 = ∅)
3231fveq2d 6830 . . . . . . . . . . 11 𝐷 ∈ V → (Base‘𝐺) = (Base‘∅))
33 base0 17143 . . . . . . . . . . 11 ∅ = (Base‘∅)
3432, 33eqtr4di 2782 . . . . . . . . . 10 𝐷 ∈ V → (Base‘𝐺) = ∅)
356, 34eqtrid 2776 . . . . . . . . 9 𝐷 ∈ V → 𝐵 = ∅)
36 rabeq 3411 . . . . . . . . 9 (𝐵 = ∅ → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
3735, 36syl 17 . . . . . . . 8 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
38 rab0 4339 . . . . . . . 8 {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅
3937, 38eqtrdi 2780 . . . . . . 7 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅)
4010, 39eqtrid 2776 . . . . . 6 𝐷 ∈ V → 𝐹 = ∅)
4140mpteq1d 5185 . . . . 5 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
42 mpt0 6628 . . . . 5 (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅
4341, 42eqtrdi 2780 . . . 4 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅)
4429, 43eqtr4d 2767 . . 3 𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
4528, 44pm2.61i 182 . 2 (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
461, 45eqtri 2752 1 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  c0 4286  cmpt 5176   I cid 5517  dom cdm 5623  ran crn 5624  cio 6440  cfv 6486  (class class class)co 7353  Fincfn 8879  1c1 11029  -cneg 11366  cexp 13986  chash 14255  Word cword 14438  Basecbs 17138   Σg cgsu 17362  SymGrpcsymg 19266  pmTrspcpmtr 19338  pmSgncpsgn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-slot 17111  df-ndx 17123  df-base 17139  df-psgn 19388
This theorem is referenced by:  psgnfn  19398  psgnval  19404  psgnfvalfi  19410
  Copyright terms: Public domain W3C validator