MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfval Structured version   Visualization version   GIF version

Theorem psgnfval 19296
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfval.g 𝐺 = (SymGrp‘𝐷)
psgnfval.b 𝐵 = (Base‘𝐺)
psgnfval.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfval 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑠,𝑝,𝑤,𝑥   𝐷,𝑠,𝑤,𝑥   𝑥,𝐹   𝑤,𝑇   𝐵,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑠)   𝐷(𝑝)   𝑇(𝑥,𝑠,𝑝)   𝐹(𝑤,𝑠,𝑝)   𝐺(𝑥,𝑤,𝑠,𝑝)   𝑁(𝑥,𝑤,𝑠,𝑝)

Proof of Theorem psgnfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 psgnfval.n . 2 𝑁 = (pmSgn‘𝐷)
2 fveq2 6847 . . . . . . . . . 10 (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷))
3 psgnfval.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
42, 3eqtr4di 2789 . . . . . . . . 9 (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺)
54fveq2d 6851 . . . . . . . 8 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺))
6 psgnfval.b . . . . . . . 8 𝐵 = (Base‘𝐺)
75, 6eqtr4di 2789 . . . . . . 7 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵)
8 rabeq 3419 . . . . . . 7 ((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
97, 8syl 17 . . . . . 6 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
10 psgnfval.f . . . . . 6 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
119, 10eqtr4di 2789 . . . . 5 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹)
12 fveq2 6847 . . . . . . . . . 10 (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷))
1312rneqd 5898 . . . . . . . . 9 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷))
14 psgnfval.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘𝐷)
1513, 14eqtr4di 2789 . . . . . . . 8 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇)
16 wrdeq 14436 . . . . . . . 8 (ran (pmTrsp‘𝑑) = 𝑇 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
1715, 16syl 17 . . . . . . 7 (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
184oveq1d 7377 . . . . . . . . 9 (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤))
1918eqeq2d 2742 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤)))
2019anbi1d 630 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2117, 20rexeqbidv 3318 . . . . . 6 (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2221iotabidv 6485 . . . . 5 (𝑑 = 𝐷 → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2311, 22mpteq12dv 5201 . . . 4 (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
24 df-psgn 19287 . . . 4 pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
256fvexi 6861 . . . . . 6 𝐵 ∈ V
2610, 25rabex2 5296 . . . . 5 𝐹 ∈ V
2726mptex 7178 . . . 4 (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) ∈ V
2823, 24, 27fvmpt 6953 . . 3 (𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
29 fvprc 6839 . . . 4 𝐷 ∈ V → (pmSgn‘𝐷) = ∅)
30 fvprc 6839 . . . . . . . . . . . . 13 𝐷 ∈ V → (SymGrp‘𝐷) = ∅)
313, 30eqtrid 2783 . . . . . . . . . . . 12 𝐷 ∈ V → 𝐺 = ∅)
3231fveq2d 6851 . . . . . . . . . . 11 𝐷 ∈ V → (Base‘𝐺) = (Base‘∅))
33 base0 17099 . . . . . . . . . . 11 ∅ = (Base‘∅)
3432, 33eqtr4di 2789 . . . . . . . . . 10 𝐷 ∈ V → (Base‘𝐺) = ∅)
356, 34eqtrid 2783 . . . . . . . . 9 𝐷 ∈ V → 𝐵 = ∅)
36 rabeq 3419 . . . . . . . . 9 (𝐵 = ∅ → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
3735, 36syl 17 . . . . . . . 8 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
38 rab0 4347 . . . . . . . 8 {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅
3937, 38eqtrdi 2787 . . . . . . 7 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅)
4010, 39eqtrid 2783 . . . . . 6 𝐷 ∈ V → 𝐹 = ∅)
4140mpteq1d 5205 . . . . 5 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
42 mpt0 6648 . . . . 5 (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅
4341, 42eqtrdi 2787 . . . 4 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅)
4429, 43eqtr4d 2774 . . 3 𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
4528, 44pm2.61i 182 . 2 (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
461, 45eqtri 2759 1 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  wrex 3069  {crab 3405  Vcvv 3446  cdif 3910  c0 4287  cmpt 5193   I cid 5535  dom cdm 5638  ran crn 5639  cio 6451  cfv 6501  (class class class)co 7362  Fincfn 8890  1c1 11061  -cneg 11395  cexp 13977  chash 14240  Word cword 14414  Basecbs 17094   Σg cgsu 17336  SymGrpcsymg 19162  pmTrspcpmtr 19237  pmSgncpsgn 19285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-fzo 13578  df-hash 14241  df-word 14415  df-slot 17065  df-ndx 17077  df-base 17095  df-psgn 19287
This theorem is referenced by:  psgnfn  19297  psgnval  19303  psgnfvalfi  19309
  Copyright terms: Public domain W3C validator