| Step | Hyp | Ref
| Expression |
| 1 | | psgnfval.n |
. 2
⊢ 𝑁 = (pmSgn‘𝐷) |
| 2 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷)) |
| 3 | | psgnfval.g |
. . . . . . . . . 10
⊢ 𝐺 = (SymGrp‘𝐷) |
| 4 | 2, 3 | eqtr4di 2795 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺) |
| 5 | 4 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺)) |
| 6 | | psgnfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 7 | 5, 6 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵) |
| 8 | | rabeq 3451 |
. . . . . . 7
⊢
((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} =
{𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
| 9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} =
{𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
| 10 | | psgnfval.f |
. . . . . 6
⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
| 11 | 9, 10 | eqtr4di 2795 |
. . . . 5
⊢ (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹) |
| 12 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷)) |
| 13 | 12 | rneqd 5949 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷)) |
| 14 | | psgnfval.t |
. . . . . . . . 9
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| 15 | 13, 14 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇) |
| 16 | | wrdeq 14574 |
. . . . . . . 8
⊢ (ran
(pmTrsp‘𝑑) = 𝑇 → Word ran
(pmTrsp‘𝑑) = Word
𝑇) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇) |
| 18 | 4 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤)) |
| 19 | 18 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤))) |
| 20 | 19 | anbi1d 631 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 21 | 17, 20 | rexeqbidv 3347 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 22 | 21 | iotabidv 6545 |
. . . . 5
⊢ (𝑑 = 𝐷 → (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 23 | 11, 22 | mpteq12dv 5233 |
. . . 4
⊢ (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| 24 | | df-psgn 19509 |
. . . 4
⊢ pmSgn =
(𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| 25 | 6 | fvexi 6920 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 26 | 10, 25 | rabex2 5341 |
. . . . 5
⊢ 𝐹 ∈ V |
| 27 | 26 | mptex 7243 |
. . . 4
⊢ (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) ∈ V |
| 28 | 23, 24, 27 | fvmpt 7016 |
. . 3
⊢ (𝐷 ∈ V →
(pmSgn‘𝐷) = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| 29 | | fvprc 6898 |
. . . 4
⊢ (¬
𝐷 ∈ V →
(pmSgn‘𝐷) =
∅) |
| 30 | | fvprc 6898 |
. . . . . . . . . . . . 13
⊢ (¬
𝐷 ∈ V →
(SymGrp‘𝐷) =
∅) |
| 31 | 3, 30 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ (¬
𝐷 ∈ V → 𝐺 = ∅) |
| 32 | 31 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (¬
𝐷 ∈ V →
(Base‘𝐺) =
(Base‘∅)) |
| 33 | | base0 17252 |
. . . . . . . . . . 11
⊢ ∅ =
(Base‘∅) |
| 34 | 32, 33 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (¬
𝐷 ∈ V →
(Base‘𝐺) =
∅) |
| 35 | 6, 34 | eqtrid 2789 |
. . . . . . . . 9
⊢ (¬
𝐷 ∈ V → 𝐵 = ∅) |
| 36 | | rabeq 3451 |
. . . . . . . . 9
⊢ (𝐵 = ∅ → {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom
(𝑝 ∖ I ) ∈
Fin}) |
| 37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (¬
𝐷 ∈ V → {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom
(𝑝 ∖ I ) ∈
Fin}) |
| 38 | | rab0 4386 |
. . . . . . . 8
⊢ {𝑝 ∈ ∅ ∣ dom
(𝑝 ∖ I ) ∈ Fin}
= ∅ |
| 39 | 37, 38 | eqtrdi 2793 |
. . . . . . 7
⊢ (¬
𝐷 ∈ V → {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} =
∅) |
| 40 | 10, 39 | eqtrid 2789 |
. . . . . 6
⊢ (¬
𝐷 ∈ V → 𝐹 = ∅) |
| 41 | 40 | mpteq1d 5237 |
. . . . 5
⊢ (¬
𝐷 ∈ V → (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| 42 | | mpt0 6710 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦
(℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅ |
| 43 | 41, 42 | eqtrdi 2793 |
. . . 4
⊢ (¬
𝐷 ∈ V → (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅) |
| 44 | 29, 43 | eqtr4d 2780 |
. . 3
⊢ (¬
𝐷 ∈ V →
(pmSgn‘𝐷) = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| 45 | 28, 44 | pm2.61i 182 |
. 2
⊢
(pmSgn‘𝐷) =
(𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 46 | 1, 45 | eqtri 2765 |
1
⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |