Step | Hyp | Ref
| Expression |
1 | | psgnfval.n |
. 2
⊢ 𝑁 = (pmSgn‘𝐷) |
2 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷)) |
3 | | psgnfval.g |
. . . . . . . . . 10
⊢ 𝐺 = (SymGrp‘𝐷) |
4 | 2, 3 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺) |
5 | 4 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺)) |
6 | | psgnfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
7 | 5, 6 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵) |
8 | | rabeq 3394 |
. . . . . . 7
⊢
((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} =
{𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} =
{𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
10 | | psgnfval.f |
. . . . . 6
⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
11 | 9, 10 | eqtr4di 2796 |
. . . . 5
⊢ (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹) |
12 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷)) |
13 | 12 | rneqd 5807 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷)) |
14 | | psgnfval.t |
. . . . . . . . 9
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
15 | 13, 14 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇) |
16 | | wrdeq 14091 |
. . . . . . . 8
⊢ (ran
(pmTrsp‘𝑑) = 𝑇 → Word ran
(pmTrsp‘𝑑) = Word
𝑇) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇) |
18 | 4 | oveq1d 7228 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤)) |
19 | 18 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤))) |
20 | 19 | anbi1d 633 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
21 | 17, 20 | rexeqbidv 3314 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
22 | 21 | iotabidv 6364 |
. . . . 5
⊢ (𝑑 = 𝐷 → (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
23 | 11, 22 | mpteq12dv 5140 |
. . . 4
⊢ (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
24 | | df-psgn 18883 |
. . . 4
⊢ pmSgn =
(𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
25 | 6 | fvexi 6731 |
. . . . . 6
⊢ 𝐵 ∈ V |
26 | 10, 25 | rabex2 5227 |
. . . . 5
⊢ 𝐹 ∈ V |
27 | 26 | mptex 7039 |
. . . 4
⊢ (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) ∈ V |
28 | 23, 24, 27 | fvmpt 6818 |
. . 3
⊢ (𝐷 ∈ V →
(pmSgn‘𝐷) = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
29 | | fvprc 6709 |
. . . 4
⊢ (¬
𝐷 ∈ V →
(pmSgn‘𝐷) =
∅) |
30 | | fvprc 6709 |
. . . . . . . . . . . . 13
⊢ (¬
𝐷 ∈ V →
(SymGrp‘𝐷) =
∅) |
31 | 3, 30 | syl5eq 2790 |
. . . . . . . . . . . 12
⊢ (¬
𝐷 ∈ V → 𝐺 = ∅) |
32 | 31 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ (¬
𝐷 ∈ V →
(Base‘𝐺) =
(Base‘∅)) |
33 | | base0 16765 |
. . . . . . . . . . 11
⊢ ∅ =
(Base‘∅) |
34 | 32, 33 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (¬
𝐷 ∈ V →
(Base‘𝐺) =
∅) |
35 | 6, 34 | syl5eq 2790 |
. . . . . . . . 9
⊢ (¬
𝐷 ∈ V → 𝐵 = ∅) |
36 | | rabeq 3394 |
. . . . . . . . 9
⊢ (𝐵 = ∅ → {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom
(𝑝 ∖ I ) ∈
Fin}) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (¬
𝐷 ∈ V → {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom
(𝑝 ∖ I ) ∈
Fin}) |
38 | | rab0 4297 |
. . . . . . . 8
⊢ {𝑝 ∈ ∅ ∣ dom
(𝑝 ∖ I ) ∈ Fin}
= ∅ |
39 | 37, 38 | eqtrdi 2794 |
. . . . . . 7
⊢ (¬
𝐷 ∈ V → {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} =
∅) |
40 | 10, 39 | syl5eq 2790 |
. . . . . 6
⊢ (¬
𝐷 ∈ V → 𝐹 = ∅) |
41 | 40 | mpteq1d 5144 |
. . . . 5
⊢ (¬
𝐷 ∈ V → (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
42 | | mpt0 6520 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦
(℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅ |
43 | 41, 42 | eqtrdi 2794 |
. . . 4
⊢ (¬
𝐷 ∈ V → (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅) |
44 | 29, 43 | eqtr4d 2780 |
. . 3
⊢ (¬
𝐷 ∈ V →
(pmSgn‘𝐷) = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
45 | 28, 44 | pm2.61i 185 |
. 2
⊢
(pmSgn‘𝐷) =
(𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
46 | 1, 45 | eqtri 2765 |
1
⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |