Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-evpm | Structured version Visualization version GIF version |
Description: Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
Ref | Expression |
---|---|
df-evpm | ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cevpm 19013 | . 2 class pmEven | |
2 | vd | . . 3 setvar 𝑑 | |
3 | cvv 3422 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . . 6 class 𝑑 |
5 | cpsgn 19012 | . . . . . 6 class pmSgn | |
6 | 4, 5 | cfv 6418 | . . . . 5 class (pmSgn‘𝑑) |
7 | 6 | ccnv 5579 | . . . 4 class ◡(pmSgn‘𝑑) |
8 | c1 10803 | . . . . 5 class 1 | |
9 | 8 | csn 4558 | . . . 4 class {1} |
10 | 7, 9 | cima 5583 | . . 3 class (◡(pmSgn‘𝑑) “ {1}) |
11 | 2, 3, 10 | cmpt 5153 | . 2 class (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
12 | 1, 11 | wceq 1539 | 1 wff pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
Colors of variables: wff setvar class |
This definition is referenced by: evpmss 20703 psgnevpmb 20704 evpmval 31314 altgnsg 31318 |
Copyright terms: Public domain | W3C validator |