MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-evpm Structured version   Visualization version   GIF version

Definition df-evpm 19510
Description: Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Assertion
Ref Expression
df-evpm pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))

Detailed syntax breakdown of Definition df-evpm
StepHypRef Expression
1 cevpm 19508 . 2 class pmEven
2 vd . . 3 setvar 𝑑
3 cvv 3480 . . 3 class V
42cv 1539 . . . . . 6 class 𝑑
5 cpsgn 19507 . . . . . 6 class pmSgn
64, 5cfv 6561 . . . . 5 class (pmSgn‘𝑑)
76ccnv 5684 . . . 4 class (pmSgn‘𝑑)
8 c1 11156 . . . . 5 class 1
98csn 4626 . . . 4 class {1}
107, 9cima 5688 . . 3 class ((pmSgn‘𝑑) “ {1})
112, 3, 10cmpt 5225 . 2 class (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
121, 11wceq 1540 1 wff pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
Colors of variables: wff setvar class
This definition is referenced by:  evpmss  21604  psgnevpmb  21605  evpmval  33165  altgnsg  33169
  Copyright terms: Public domain W3C validator