| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-evpm | Structured version Visualization version GIF version | ||
| Description: Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| df-evpm | ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cevpm 19427 | . 2 class pmEven | |
| 2 | vd | . . 3 setvar 𝑑 | |
| 3 | cvv 3450 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . . 6 class 𝑑 |
| 5 | cpsgn 19426 | . . . . . 6 class pmSgn | |
| 6 | 4, 5 | cfv 6514 | . . . . 5 class (pmSgn‘𝑑) |
| 7 | 6 | ccnv 5640 | . . . 4 class ◡(pmSgn‘𝑑) |
| 8 | c1 11076 | . . . . 5 class 1 | |
| 9 | 8 | csn 4592 | . . . 4 class {1} |
| 10 | 7, 9 | cima 5644 | . . 3 class (◡(pmSgn‘𝑑) “ {1}) |
| 11 | 2, 3, 10 | cmpt 5191 | . 2 class (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
| 12 | 1, 11 | wceq 1540 | 1 wff pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: evpmss 21502 psgnevpmb 21503 evpmval 33109 altgnsg 33113 |
| Copyright terms: Public domain | W3C validator |