MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrval Structured version   Visualization version   GIF version

Theorem psrval 21118
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrval.s 𝑆 = (𝐼 mPwSer 𝑅)
psrval.k 𝐾 = (Base‘𝑅)
psrval.a + = (+g𝑅)
psrval.m · = (.r𝑅)
psrval.o 𝑂 = (TopOpen‘𝑅)
psrval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrval.b (𝜑𝐵 = (𝐾m 𝐷))
psrval.p = ( ∘f + ↾ (𝐵 × 𝐵))
psrval.t × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
psrval.v = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
psrval.j (𝜑𝐽 = (∏t‘(𝐷 × {𝑂})))
psrval.i (𝜑𝐼𝑊)
psrval.r (𝜑𝑅𝑋)
Assertion
Ref Expression
psrval (𝜑𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
Distinct variable groups:   𝑦,   𝑓,𝑔,𝑘,𝑥,𝜑   𝐵,𝑓,𝑔,𝑘,𝑥   𝑓,,𝐼,𝑔,𝑘,𝑥   𝑅,𝑓,𝑔,𝑘,𝑥   𝑦,𝑓,𝐷,𝑔,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   + (𝑥,𝑦,𝑓,𝑔,,𝑘)   (𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,𝑔,,𝑘)   (𝑥,𝑦,𝑓,𝑔,,𝑘)   · (𝑥,𝑦,𝑓,𝑔,,𝑘)   × (𝑥,𝑦,𝑓,𝑔,,𝑘)   𝐼(𝑦)   𝐽(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝐾(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑊(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑋(𝑥,𝑦,𝑓,𝑔,,𝑘)

Proof of Theorem psrval
Dummy variables 𝑖 𝑟 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrval.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
2 df-psr 21112 . . . 4 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
32a1i 11 . . 3 (𝜑 → mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩})))
4 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → 𝑖 = 𝐼)
54oveq2d 7291 . . . . . . 7 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
6 rabeq 3418 . . . . . . 7 ((ℕ0m 𝑖) = (ℕ0m 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
75, 6syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8 psrval.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
97, 8eqtr4di 2796 . . . . 5 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
109csbeq1d 3836 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = 𝐷 / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
11 ovex 7308 . . . . . . 7 (ℕ0m 𝑖) ∈ V
1211rabex 5256 . . . . . 6 { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∈ V
139, 12eqeltrrdi 2848 . . . . 5 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → 𝐷 ∈ V)
14 simplrr 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑟 = 𝑅)
1514fveq2d 6778 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = (Base‘𝑅))
16 psrval.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
1715, 16eqtr4di 2796 . . . . . . . . 9 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = 𝐾)
18 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1917, 18oveq12d 7293 . . . . . . . 8 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑m 𝑑) = (𝐾m 𝐷))
20 psrval.b . . . . . . . . 9 (𝜑𝐵 = (𝐾m 𝐷))
2120ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 = (𝐾m 𝐷))
2219, 21eqtr4d 2781 . . . . . . 7 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑m 𝑑) = 𝐵)
2322csbeq1d 3836 . . . . . 6 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
24 ovex 7308 . . . . . . . 8 ((Base‘𝑟) ↑m 𝑑) ∈ V
2522, 24eqeltrrdi 2848 . . . . . . 7 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 ∈ V)
26 simpr 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
2726opeq2d 4811 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
2814adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅)
2928fveq2d 6778 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g𝑟) = (+g𝑅))
30 psrval.a . . . . . . . . . . . . . 14 + = (+g𝑅)
3129, 30eqtr4di 2796 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g𝑟) = + )
3231ofeqd 7535 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘f (+g𝑟) = ∘f + )
3326, 26xpeq12d 5620 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
3432, 33reseq12d 5892 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏)) = ( ∘f + ↾ (𝐵 × 𝐵)))
35 psrval.p . . . . . . . . . . 11 = ( ∘f + ↾ (𝐵 × 𝐵))
3634, 35eqtr4di 2796 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏)) = )
3736opeq2d 4811 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩ = ⟨(+g‘ndx), ⟩)
3818adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷)
39 rabeq 3418 . . . . . . . . . . . . . . . 16 (𝑑 = 𝐷 → {𝑦𝑑𝑦r𝑘} = {𝑦𝐷𝑦r𝑘})
4038, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {𝑦𝑑𝑦r𝑘} = {𝑦𝐷𝑦r𝑘})
4128fveq2d 6778 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r𝑟) = (.r𝑅))
42 psrval.m . . . . . . . . . . . . . . . . 17 · = (.r𝑅)
4341, 42eqtr4di 2796 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r𝑟) = · )
4443oveqd 7292 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥))) = ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))
4540, 44mpteq12dv 5165 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))
4628, 45oveq12d 7293 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))
4738, 46mpteq12dv 5165 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
4826, 26, 47mpoeq123dv 7350 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))))
49 psrval.t . . . . . . . . . . 11 × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
5048, 49eqtr4di 2796 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥))))))) = × )
5150opeq2d 4811 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩ = ⟨(.r‘ndx), × ⟩)
5227, 37, 51tpeq123d 4684 . . . . . . . 8 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩})
5328opeq2d 4811 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(Scalar‘ndx), 𝑟⟩ = ⟨(Scalar‘ndx), 𝑅⟩)
5417adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Base‘𝑟) = 𝐾)
5543ofeqd 7535 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘f (.r𝑟) = ∘f · )
5638xpeq1d 5618 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {𝑥}) = (𝐷 × {𝑥}))
57 eqidd 2739 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
5855, 56, 57oveq123d 7296 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓) = ((𝐷 × {𝑥}) ∘f · 𝑓))
5954, 26, 58mpoeq123dv 7350 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
60 psrval.v . . . . . . . . . . 11 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
6159, 60eqtr4di 2796 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓)) = )
6261opeq2d 4811 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
6328fveq2d 6778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = (TopOpen‘𝑅))
64 psrval.o . . . . . . . . . . . . . . 15 𝑂 = (TopOpen‘𝑅)
6563, 64eqtr4di 2796 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = 𝑂)
6665sneqd 4573 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {(TopOpen‘𝑟)} = {𝑂})
6738, 66xpeq12d 5620 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {(TopOpen‘𝑟)}) = (𝐷 × {𝑂}))
6867fveq2d 6778 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = (∏t‘(𝐷 × {𝑂})))
69 psrval.j . . . . . . . . . . . 12 (𝜑𝐽 = (∏t‘(𝐷 × {𝑂})))
7069ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝐽 = (∏t‘(𝐷 × {𝑂})))
7168, 70eqtr4d 2781 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = 𝐽)
7271opeq2d 4811 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
7353, 62, 72tpeq123d 4684 . . . . . . . 8 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩} = {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
7452, 73uneq12d 4098 . . . . . . 7 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
7525, 74csbied 3870 . . . . . 6 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
7623, 75eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
7713, 76csbied 3870 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → 𝐷 / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
7810, 77eqtrd 2778 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
79 psrval.i . . . 4 (𝜑𝐼𝑊)
8079elexd 3452 . . 3 (𝜑𝐼 ∈ V)
81 psrval.r . . . 4 (𝜑𝑅𝑋)
8281elexd 3452 . . 3 (𝜑𝑅 ∈ V)
83 tpex 7597 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∈ V
84 tpex 7597 . . . . 5 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V
8583, 84unex 7596 . . . 4 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) ∈ V
8685a1i 11 . . 3 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) ∈ V)
873, 78, 80, 82, 86ovmpod 7425 . 2 (𝜑 → (𝐼 mPwSer 𝑅) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
881, 87eqtrid 2790 1 (𝜑𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  csb 3832  cun 3885  {csn 4561  {ctp 4565  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  cres 5591  cima 5592  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  r cofr 7532  m cmap 8615  Fincfn 8733  cle 11010  cmin 11205  cn 11973  0cn0 12233  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  TopSetcts 16968  TopOpenctopn 17132  tcpt 17149   Σg cgsu 17151   mPwSer cmps 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-psr 21112
This theorem is referenced by:  psrbas  21147  psrplusg  21150  psrmulr  21153  psrsca  21158  psrvscafval  21159
  Copyright terms: Public domain W3C validator