Step | Hyp | Ref
| Expression |
1 | | psrval.s |
. 2
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | df-psr 21022 |
. . . 4
⊢ mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}))) |
4 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝑖 = 𝐼) |
5 | 4 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
6 | | rabeq 3408 |
. . . . . . 7
⊢
((ℕ0 ↑m 𝑖) = (ℕ0 ↑m
𝐼) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
8 | | psrval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
9 | 7, 8 | eqtr4di 2797 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
10 | 9 | csbeq1d 3832 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
11 | | ovex 7288 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝑖) ∈ V |
12 | 11 | rabex 5251 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
13 | 9, 12 | eqeltrrdi 2848 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝐷 ∈ V) |
14 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑟 = 𝑅) |
15 | 14 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = (Base‘𝑅)) |
16 | | psrval.k |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑅) |
17 | 15, 16 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = 𝐾) |
18 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
19 | 17, 18 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑m 𝑑) = (𝐾 ↑m 𝐷)) |
20 | | psrval.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (𝐾 ↑m 𝐷)) |
21 | 20 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 = (𝐾 ↑m 𝐷)) |
22 | 19, 21 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑m 𝑑) = 𝐵) |
23 | 22 | csbeq1d 3832 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) |
24 | | ovex 7288 |
. . . . . . . 8
⊢
((Base‘𝑟)
↑m 𝑑)
∈ V |
25 | 22, 24 | eqeltrrdi 2848 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 ∈ V) |
26 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
27 | 26 | opeq2d 4808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx),
𝐵〉) |
28 | 14 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅) |
29 | 28 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = (+g‘𝑅)) |
30 | | psrval.a |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑅) |
31 | 29, 30 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = + ) |
32 | 31 | ofeqd 7513 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘f
(+g‘𝑟) =
∘f + ) |
33 | 26, 26 | xpeq12d 5611 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵)) |
34 | 32, 33 | reseq12d 5881 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = ( ∘f + ↾
(𝐵 × 𝐵))) |
35 | | psrval.p |
. . . . . . . . . . 11
⊢ ✚ = (
∘f + ↾ (𝐵 × 𝐵)) |
36 | 34, 35 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = ✚ ) |
37 | 36 | opeq2d 4808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(+g‘ndx), (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉 = 〈(+g‘ndx),
✚
〉) |
38 | 18 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) |
39 | | rabeq 3408 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝐷 → {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
41 | 28 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = (.r‘𝑅)) |
42 | | psrval.m |
. . . . . . . . . . . . . . . . 17
⊢ · =
(.r‘𝑅) |
43 | 41, 42 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = · ) |
44 | 43 | oveqd 7272 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))) = ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))) |
45 | 40, 44 | mpteq12dv 5161 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))) |
46 | 28, 45 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))) |
47 | 38, 46 | mpteq12dv 5161 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) |
48 | 26, 26, 47 | mpoeq123dv 7328 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))) |
49 | | psrval.t |
. . . . . . . . . . 11
⊢ × =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) |
50 | 48, 49 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))))) = × ) |
51 | 50 | opeq2d 4808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉 =
〈(.r‘ndx), ×
〉) |
52 | 27, 37, 51 | tpeq123d 4681 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ×
〉}) |
53 | 28 | opeq2d 4808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Scalar‘ndx), 𝑟〉 =
〈(Scalar‘ndx), 𝑅〉) |
54 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Base‘𝑟) = 𝐾) |
55 | 43 | ofeqd 7513 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘f
(.r‘𝑟) =
∘f · ) |
56 | 38 | xpeq1d 5609 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {𝑥}) = (𝐷 × {𝑥})) |
57 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓) |
58 | 55, 56, 57 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓) = ((𝐷 × {𝑥}) ∘f · 𝑓)) |
59 | 54, 26, 58 | mpoeq123dv 7328 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓)) = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))) |
60 | | psrval.v |
. . . . . . . . . . 11
⊢ ∙ =
(𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) |
61 | 59, 60 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓)) = ∙ ) |
62 | 61 | opeq2d 4808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉 = 〈(
·𝑠 ‘ndx), ∙
〉) |
63 | 28 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = (TopOpen‘𝑅)) |
64 | | psrval.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (TopOpen‘𝑅) |
65 | 63, 64 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = 𝑂) |
66 | 65 | sneqd 4570 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {(TopOpen‘𝑟)} = {𝑂}) |
67 | 38, 66 | xpeq12d 5611 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {(TopOpen‘𝑟)}) = (𝐷 × {𝑂})) |
68 | 67 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) =
(∏t‘(𝐷 × {𝑂}))) |
69 | | psrval.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 = (∏t‘(𝐷 × {𝑂}))) |
70 | 69 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝐽 = (∏t‘(𝐷 × {𝑂}))) |
71 | 68, 70 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = 𝐽) |
72 | 71 | opeq2d 4808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 = 〈(TopSet‘ndx), 𝐽〉) |
73 | 53, 62, 72 | tpeq123d 4681 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} = {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
74 | 52, 73 | uneq12d 4094 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
75 | 25, 74 | csbied 3866 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
76 | 23, 75 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
77 | 13, 76 | csbied 3866 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
78 | 10, 77 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
79 | | psrval.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
80 | 79 | elexd 3442 |
. . 3
⊢ (𝜑 → 𝐼 ∈ V) |
81 | | psrval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑋) |
82 | 81 | elexd 3442 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
83 | | tpex 7575 |
. . . . 5
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈
V |
84 | | tpex 7575 |
. . . . 5
⊢
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V |
85 | 83, 84 | unex 7574 |
. . . 4
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V |
86 | 85 | a1i 11 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) |
87 | 3, 78, 80, 82, 86 | ovmpod 7403 |
. 2
⊢ (𝜑 → (𝐼 mPwSer 𝑅) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
88 | 1, 87 | eqtrid 2790 |
1
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |