![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version |
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmpsr | β’ Rel dom mPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psr 21468 | . 2 β’ mPwSer = (π β V, π β V β¦ β¦{β β (β0 βm π) β£ (β‘β β β) β Fin} / πβ¦β¦((Baseβπ) βm π) / πβ¦({β¨(Baseβndx), πβ©, β¨(+gβndx), ( βf (+gβπ) βΎ (π Γ π))β©, β¨(.rβndx), (π β π, π β π β¦ (π β π β¦ (π Ξ£g (π₯ β {π¦ β π β£ π¦ βr β€ π} β¦ ((πβπ₯)(.rβπ)(πβ(π βf β π₯)))))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), (π₯ β (Baseβπ), π β π β¦ ((π Γ {π₯}) βf (.rβπ)π))β©, β¨(TopSetβndx), (βtβ(π Γ {(TopOpenβπ)}))β©})) | |
2 | 1 | reldmmpo 7545 | 1 β’ Rel dom mPwSer |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2106 {crab 3432 Vcvv 3474 β¦csb 3893 βͺ cun 3946 {csn 4628 {ctp 4632 β¨cop 4634 class class class wbr 5148 β¦ cmpt 5231 Γ cxp 5674 β‘ccnv 5675 dom cdm 5676 βΎ cres 5678 β cima 5679 Rel wrel 5681 βcfv 6543 (class class class)co 7411 β cmpo 7413 βf cof 7670 βr cofr 7671 βm cmap 8822 Fincfn 8941 β€ cle 11251 β cmin 11446 βcn 12214 β0cn0 12474 ndxcnx 17128 Basecbs 17146 +gcplusg 17199 .rcmulr 17200 Scalarcsca 17202 Β·π cvsca 17203 TopSetcts 17205 TopOpenctopn 17369 βtcpt 17386 Ξ£g cgsu 17388 mPwSer cmps 21463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-oprab 7415 df-mpo 7416 df-psr 21468 |
This theorem is referenced by: psrbas 21503 psrelbas 21504 psrplusg 21506 psraddcl 21508 psrmulr 21509 psrmulcllem 21512 psrvscafval 21515 psrvscacl 21518 resspsrbas 21541 resspsradd 21542 resspsrmul 21543 mplval 21554 opsrle 21608 opsrbaslem 21610 opsrbaslemOLD 21611 psrbaspropd 21764 psropprmul 21767 |
Copyright terms: Public domain | W3C validator |