![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version |
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmpsr | ⊢ Rel dom mPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psr 21947 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
2 | 1 | reldmmpo 7567 | 1 ⊢ Rel dom mPwSer |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3433 Vcvv 3478 ⦋csb 3908 ∪ cun 3961 {csn 4631 {ctp 4635 〈cop 4637 class class class wbr 5148 ↦ cmpt 5231 × cxp 5687 ◡ccnv 5688 dom cdm 5689 ↾ cres 5691 “ cima 5692 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ∘f cof 7695 ∘r cofr 7696 ↑m cmap 8865 Fincfn 8984 ≤ cle 11294 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 TopSetcts 17304 TopOpenctopn 17468 ∏tcpt 17485 Σg cgsu 17487 mPwSer cmps 21942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-oprab 7435 df-mpo 7436 df-psr 21947 |
This theorem is referenced by: psrbas 21971 psrelbas 21972 psrplusg 21974 psraddcl 21976 psraddclOLD 21977 psrmulr 21980 psrmulcllem 21983 psrvscafval 21986 psrvscacl 21989 resspsrbas 22012 resspsradd 22013 resspsrmul 22014 mplval 22027 opsrle 22083 opsrbaslem 22085 opsrbaslemOLD 22086 psdval 22181 psdcl 22183 psdadd 22185 psdvsca 22186 psdmul 22188 psrbaspropd 22252 psropprmul 22255 mhmcopsr 42536 |
Copyright terms: Public domain | W3C validator |