Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version |
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmpsr | ⊢ Rel dom mPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psr 21112 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
2 | 1 | reldmmpo 7408 | 1 ⊢ Rel dom mPwSer |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3068 Vcvv 3432 ⦋csb 3832 ∪ cun 3885 {csn 4561 {ctp 4565 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ↾ cres 5591 “ cima 5592 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ∘f cof 7531 ∘r cofr 7532 ↑m cmap 8615 Fincfn 8733 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 TopSetcts 16968 TopOpenctopn 17132 ∏tcpt 17149 Σg cgsu 17151 mPwSer cmps 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-oprab 7279 df-mpo 7280 df-psr 21112 |
This theorem is referenced by: psrbas 21147 psrelbas 21148 psrplusg 21150 psraddcl 21152 psrmulr 21153 psrmulcllem 21156 psrvscafval 21159 psrvscacl 21162 resspsrbas 21184 resspsradd 21185 resspsrmul 21186 mplval 21197 opsrle 21248 opsrbaslem 21250 opsrbaslemOLD 21251 psrbaspropd 21406 psropprmul 21409 |
Copyright terms: Public domain | W3C validator |