| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 21844 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {crab 3395 Vcvv 3436 ⦋csb 3850 ∪ cun 3900 {csn 4576 {ctp 4580 〈cop 4582 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ↾ cres 5618 “ cima 5619 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ∘f cof 7608 ∘r cofr 7609 ↑m cmap 8750 Fincfn 8869 ≤ cle 11144 − cmin 11341 ℕcn 12122 ℕ0cn0 12378 ndxcnx 17101 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 TopSetcts 17164 TopOpenctopn 17322 ∏tcpt 17339 Σg cgsu 17341 mPwSer cmps 21839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 df-oprab 7350 df-mpo 7351 df-psr 21844 |
| This theorem is referenced by: psrbas 21868 psrelbas 21869 psrplusg 21871 psraddcl 21873 psraddclOLD 21874 psrmulr 21877 psrmulcllem 21880 psrvscafval 21883 psrvscacl 21886 resspsrbas 21909 resspsradd 21910 resspsrmul 21911 mplval 21924 opsrle 21980 opsrbaslem 21982 psdval 22072 psdcl 22074 psdadd 22076 psdvsca 22077 psdmul 22079 psdpw 22083 psrbaspropd 22145 psropprmul 22148 mhmcopsr 42581 |
| Copyright terms: Public domain | W3C validator |