| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 21834 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 7487 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3396 Vcvv 3438 ⦋csb 3853 ∪ cun 3903 {csn 4579 {ctp 4583 〈cop 4585 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ↾ cres 5625 “ cima 5626 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ∘f cof 7615 ∘r cofr 7616 ↑m cmap 8760 Fincfn 8879 ≤ cle 11169 − cmin 11365 ℕcn 12146 ℕ0cn0 12402 ndxcnx 17122 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 TopSetcts 17185 TopOpenctopn 17343 ∏tcpt 17360 Σg cgsu 17362 mPwSer cmps 21829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-oprab 7357 df-mpo 7358 df-psr 21834 |
| This theorem is referenced by: psrbas 21858 psrelbas 21859 psrplusg 21861 psraddcl 21863 psraddclOLD 21864 psrmulr 21867 psrmulcllem 21870 psrvscafval 21873 psrvscacl 21876 resspsrbas 21899 resspsradd 21900 resspsrmul 21901 mplval 21914 opsrle 21970 opsrbaslem 21972 psdval 22062 psdcl 22064 psdadd 22066 psdvsca 22067 psdmul 22069 psdpw 22073 psrbaspropd 22135 psropprmul 22138 mhmcopsr 42522 |
| Copyright terms: Public domain | W3C validator |