| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 21818 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3405 Vcvv 3447 ⦋csb 3862 ∪ cun 3912 {csn 4589 {ctp 4593 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 “ cima 5641 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ∘f cof 7651 ∘r cofr 7652 ↑m cmap 8799 Fincfn 8918 ≤ cle 11209 − cmin 11405 ℕcn 12186 ℕ0cn0 12442 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 TopSetcts 17226 TopOpenctopn 17384 ∏tcpt 17401 Σg cgsu 17403 mPwSer cmps 21813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-psr 21818 |
| This theorem is referenced by: psrbas 21842 psrelbas 21843 psrplusg 21845 psraddcl 21847 psraddclOLD 21848 psrmulr 21851 psrmulcllem 21854 psrvscafval 21857 psrvscacl 21860 resspsrbas 21883 resspsradd 21884 resspsrmul 21885 mplval 21898 opsrle 21954 opsrbaslem 21956 psdval 22046 psdcl 22048 psdadd 22050 psdvsca 22051 psdmul 22053 psdpw 22057 psrbaspropd 22119 psropprmul 22122 mhmcopsr 42537 |
| Copyright terms: Public domain | W3C validator |