MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmpsr Structured version   Visualization version   GIF version

Theorem reldmpsr 21853
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables 𝑖 𝑟 𝑦 𝑏 𝑑 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 21848 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
21reldmmpo 7486 1 Rel dom mPwSer
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  {crab 3396  Vcvv 3437  csb 3846  cun 3896  {csn 4575  {ctp 4579  cop 4581   class class class wbr 5093  cmpt 5174   × cxp 5617  ccnv 5618  dom cdm 5619  cres 5621  cima 5622  Rel wrel 5624  cfv 6486  (class class class)co 7352  cmpo 7354  f cof 7614  r cofr 7615  m cmap 8756  Fincfn 8875  cle 11154  cmin 11351  cn 12132  0cn0 12388  ndxcnx 17106  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  TopSetcts 17169  TopOpenctopn 17327  tcpt 17344   Σg cgsu 17346   mPwSer cmps 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-dm 5629  df-oprab 7356  df-mpo 7357  df-psr 21848
This theorem is referenced by:  psrbas  21872  psrelbas  21873  psrplusg  21875  psraddcl  21877  psraddclOLD  21878  psrmulr  21881  psrmulcllem  21884  psrvscafval  21887  psrvscacl  21890  resspsrbas  21912  resspsradd  21913  resspsrmul  21914  mplval  21927  opsrle  21983  opsrbaslem  21985  psdval  22075  psdcl  22077  psdadd  22079  psdvsca  22080  psdmul  22082  psdpw  22086  psrbaspropd  22148  psropprmul  22151  mhmcopsr  42667
  Copyright terms: Public domain W3C validator