| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 21848 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 7486 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 {crab 3396 Vcvv 3437 ⦋csb 3846 ∪ cun 3896 {csn 4575 {ctp 4579 〈cop 4581 class class class wbr 5093 ↦ cmpt 5174 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 “ cima 5622 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ∘f cof 7614 ∘r cofr 7615 ↑m cmap 8756 Fincfn 8875 ≤ cle 11154 − cmin 11351 ℕcn 12132 ℕ0cn0 12388 ndxcnx 17106 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 TopSetcts 17169 TopOpenctopn 17327 ∏tcpt 17344 Σg cgsu 17346 mPwSer cmps 21843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7356 df-mpo 7357 df-psr 21848 |
| This theorem is referenced by: psrbas 21872 psrelbas 21873 psrplusg 21875 psraddcl 21877 psraddclOLD 21878 psrmulr 21881 psrmulcllem 21884 psrvscafval 21887 psrvscacl 21890 resspsrbas 21912 resspsradd 21913 resspsrmul 21914 mplval 21927 opsrle 21983 opsrbaslem 21985 psdval 22075 psdcl 22077 psdadd 22079 psdvsca 22080 psdmul 22082 psdpw 22086 psrbaspropd 22148 psropprmul 22151 mhmcopsr 42667 |
| Copyright terms: Public domain | W3C validator |