Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version |
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmpsr | ⊢ Rel dom mPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psr 21022 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
2 | 1 | reldmmpo 7386 | 1 ⊢ Rel dom mPwSer |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {crab 3067 Vcvv 3422 ⦋csb 3828 ∪ cun 3881 {csn 4558 {ctp 4562 〈cop 4564 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 “ cima 5583 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ∘f cof 7509 ∘r cofr 7510 ↑m cmap 8573 Fincfn 8691 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 TopSetcts 16894 TopOpenctopn 17049 ∏tcpt 17066 Σg cgsu 17068 mPwSer cmps 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-oprab 7259 df-mpo 7260 df-psr 21022 |
This theorem is referenced by: psrbas 21057 psrelbas 21058 psrplusg 21060 psraddcl 21062 psrmulr 21063 psrmulcllem 21066 psrvscafval 21069 psrvscacl 21072 resspsrbas 21094 resspsradd 21095 resspsrmul 21096 mplval 21107 opsrle 21158 opsrbaslem 21160 opsrbaslemOLD 21161 psrbaspropd 21316 psropprmul 21319 |
Copyright terms: Public domain | W3C validator |