MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmpsr Structured version   Visualization version   GIF version

Theorem reldmpsr 21027
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables 𝑖 𝑟 𝑦 𝑏 𝑑 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 21022 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
21reldmmpo 7386 1 Rel dom mPwSer
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3067  Vcvv 3422  csb 3828  cun 3881  {csn 4558  {ctp 4562  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  Rel wrel 5585  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  r cofr 7510  m cmap 8573  Fincfn 8691  cle 10941  cmin 11135  cn 11903  0cn0 12163  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  TopSetcts 16894  TopOpenctopn 17049  tcpt 17066   Σg cgsu 17068   mPwSer cmps 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dm 5590  df-oprab 7259  df-mpo 7260  df-psr 21022
This theorem is referenced by:  psrbas  21057  psrelbas  21058  psrplusg  21060  psraddcl  21062  psrmulr  21063  psrmulcllem  21066  psrvscafval  21069  psrvscacl  21072  resspsrbas  21094  resspsradd  21095  resspsrmul  21096  mplval  21107  opsrle  21158  opsrbaslem  21160  opsrbaslemOLD  21161  psrbaspropd  21316  psropprmul  21319
  Copyright terms: Public domain W3C validator