MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmpsr Structured version   Visualization version   GIF version

Theorem reldmpsr 21849
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables 𝑖 𝑟 𝑦 𝑏 𝑑 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 21844 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
21reldmmpo 7480 1 Rel dom mPwSer
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {crab 3395  Vcvv 3436  csb 3850  cun 3900  {csn 4576  {ctp 4580  cop 4582   class class class wbr 5091  cmpt 5172   × cxp 5614  ccnv 5615  dom cdm 5616  cres 5618  cima 5619  Rel wrel 5621  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  r cofr 7609  m cmap 8750  Fincfn 8869  cle 11144  cmin 11341  cn 12122  0cn0 12378  ndxcnx 17101  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  Scalarcsca 17161   ·𝑠 cvsca 17162  TopSetcts 17164  TopOpenctopn 17322  tcpt 17339   Σg cgsu 17341   mPwSer cmps 21839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-oprab 7350  df-mpo 7351  df-psr 21844
This theorem is referenced by:  psrbas  21868  psrelbas  21869  psrplusg  21871  psraddcl  21873  psraddclOLD  21874  psrmulr  21877  psrmulcllem  21880  psrvscafval  21883  psrvscacl  21886  resspsrbas  21909  resspsradd  21910  resspsrmul  21911  mplval  21924  opsrle  21980  opsrbaslem  21982  psdval  22072  psdcl  22074  psdadd  22076  psdvsca  22077  psdmul  22079  psdpw  22083  psrbaspropd  22145  psropprmul  22148  mhmcopsr  42581
  Copyright terms: Public domain W3C validator