MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmpsr Structured version   Visualization version   GIF version

Theorem reldmpsr 20827
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables 𝑖 𝑟 𝑦 𝑏 𝑑 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 20822 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
21reldmmpo 7322 1 Rel dom mPwSer
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  {crab 3055  Vcvv 3398  csb 3798  cun 3851  {csn 4527  {ctp 4531  cop 4533   class class class wbr 5039  cmpt 5120   × cxp 5534  ccnv 5535  dom cdm 5536  cres 5538  cima 5539  Rel wrel 5541  cfv 6358  (class class class)co 7191  cmpo 7193  f cof 7445  r cofr 7446  m cmap 8486  Fincfn 8604  cle 10833  cmin 11027  cn 11795  0cn0 12055  ndxcnx 16663  Basecbs 16666  +gcplusg 16749  .rcmulr 16750  Scalarcsca 16752   ·𝑠 cvsca 16753  TopSetcts 16755  TopOpenctopn 16880  tcpt 16897   Σg cgsu 16899   mPwSer cmps 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-xp 5542  df-rel 5543  df-dm 5546  df-oprab 7195  df-mpo 7196  df-psr 20822
This theorem is referenced by:  psrbas  20857  psrelbas  20858  psrplusg  20860  psraddcl  20862  psrmulr  20863  psrmulcllem  20866  psrvscafval  20869  psrvscacl  20872  resspsrbas  20894  resspsradd  20895  resspsrmul  20896  mplval  20907  opsrle  20958  opsrbaslem  20960  psrbaspropd  21110  psropprmul  21113
  Copyright terms: Public domain W3C validator