| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 21874 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 7546 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3420 Vcvv 3464 ⦋csb 3879 ∪ cun 3929 {csn 4606 {ctp 4610 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 × cxp 5657 ◡ccnv 5658 dom cdm 5659 ↾ cres 5661 “ cima 5662 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ∘f cof 7674 ∘r cofr 7675 ↑m cmap 8845 Fincfn 8964 ≤ cle 11275 − cmin 11471 ℕcn 12245 ℕ0cn0 12506 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 TopSetcts 17282 TopOpenctopn 17440 ∏tcpt 17457 Σg cgsu 17459 mPwSer cmps 21869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dm 5669 df-oprab 7414 df-mpo 7415 df-psr 21874 |
| This theorem is referenced by: psrbas 21898 psrelbas 21899 psrplusg 21901 psraddcl 21903 psraddclOLD 21904 psrmulr 21907 psrmulcllem 21910 psrvscafval 21913 psrvscacl 21916 resspsrbas 21939 resspsradd 21940 resspsrmul 21941 mplval 21954 opsrle 22010 opsrbaslem 22012 psdval 22102 psdcl 22104 psdadd 22106 psdvsca 22107 psdmul 22109 psdpw 22113 psrbaspropd 22175 psropprmul 22178 mhmcopsr 42539 |
| Copyright terms: Public domain | W3C validator |