![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version |
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmpsr | ⊢ Rel dom mPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psr 21952 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom mPwSer |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {crab 3443 Vcvv 3488 ⦋csb 3921 ∪ cun 3974 {csn 4648 {ctp 4652 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 “ cima 5703 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ∘f cof 7712 ∘r cofr 7713 ↑m cmap 8884 Fincfn 9003 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℕ0cn0 12553 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 TopSetcts 17317 TopOpenctopn 17481 ∏tcpt 17498 Σg cgsu 17500 mPwSer cmps 21947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-psr 21952 |
This theorem is referenced by: psrbas 21976 psrelbas 21977 psrplusg 21979 psraddcl 21981 psraddclOLD 21982 psrmulr 21985 psrmulcllem 21988 psrvscafval 21991 psrvscacl 21994 resspsrbas 22017 resspsradd 22018 resspsrmul 22019 mplval 22032 opsrle 22088 opsrbaslem 22090 opsrbaslemOLD 22091 psrbaspropd 22257 psropprmul 22260 mhmcopsr 42504 |
Copyright terms: Public domain | W3C validator |