MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmpsr Structured version   Visualization version   GIF version

Theorem reldmpsr 21473
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables β„Ž 𝑖 π‘Ÿ 𝑦 𝑏 𝑑 𝑓 𝑔 π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 21468 . 2 mPwSer = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ ⦋{β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} / π‘‘β¦Œβ¦‹((Baseβ€˜π‘Ÿ) ↑m 𝑑) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), ( ∘f (+gβ€˜π‘Ÿ) β†Ύ (𝑏 Γ— 𝑏))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (π‘˜ ∈ 𝑑 ↦ (π‘Ÿ Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯)(.rβ€˜π‘Ÿ)(π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘ŸβŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑓 ∈ 𝑏 ↦ ((𝑑 Γ— {π‘₯}) ∘f (.rβ€˜π‘Ÿ)𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝑑 Γ— {(TopOpenβ€˜π‘Ÿ)}))⟩}))
21reldmmpo 7545 1 Rel dom mPwSer
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2106  {crab 3432  Vcvv 3474  β¦‹csb 3893   βˆͺ cun 3946  {csn 4628  {ctp 4632  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  β—‘ccnv 5675  dom cdm 5676   β†Ύ cres 5678   β€œ cima 5679  Rel wrel 5681  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413   ∘f cof 7670   ∘r cofr 7671   ↑m cmap 8822  Fincfn 8941   ≀ cle 11251   βˆ’ cmin 11446  β„•cn 12214  β„•0cn0 12474  ndxcnx 17128  Basecbs 17146  +gcplusg 17199  .rcmulr 17200  Scalarcsca 17202   ·𝑠 cvsca 17203  TopSetcts 17205  TopOpenctopn 17369  βˆtcpt 17386   Ξ£g cgsu 17388   mPwSer cmps 21463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686  df-oprab 7415  df-mpo 7416  df-psr 21468
This theorem is referenced by:  psrbas  21503  psrelbas  21504  psrplusg  21506  psraddcl  21508  psrmulr  21509  psrmulcllem  21512  psrvscafval  21515  psrvscacl  21518  resspsrbas  21541  resspsradd  21542  resspsrmul  21543  mplval  21554  opsrle  21608  opsrbaslem  21610  opsrbaslemOLD  21611  psrbaspropd  21764  psropprmul  21767
  Copyright terms: Public domain W3C validator