Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspset Structured version   Visualization version   GIF version

Theorem psubspset 36895
Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspset (𝐾𝐵𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
Distinct variable groups:   𝑠,𝑟,𝐴   𝑞,𝑝,𝑟,𝑠,𝐾
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐵(𝑠,𝑟,𝑞,𝑝)   𝑆(𝑠,𝑟,𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem psubspset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
3 fveq2 6670 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubspset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2874 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 3999 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6670 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
8 psubspset.j . . . . . . . . . . . . 13 = (join‘𝐾)
97, 8syl6eqr 2874 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
109oveqd 7173 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝(join‘𝑘)𝑞) = (𝑝 𝑞))
1110breq2d 5078 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟(le‘𝑘)(𝑝 𝑞)))
12 fveq2 6670 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
13 psubspset.l . . . . . . . . . . . 12 = (le‘𝐾)
1412, 13syl6eqr 2874 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
1514breqd 5077 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝 𝑞) ↔ 𝑟 (𝑝 𝑞)))
1611, 15bitrd 281 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟 (𝑝 𝑞)))
1716imbi1d 344 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
185, 17raleqbidv 3401 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
19182ralbidv 3199 . . . . . 6 (𝑘 = 𝐾 → (∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
206, 19anbi12d 632 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠)) ↔ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))))
2120abbidv 2885 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))} = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
22 df-psubsp 36654 . . . 4 PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))})
234fvexi 6684 . . . . . 6 𝐴 ∈ V
2423pwex 5281 . . . . 5 𝒫 𝐴 ∈ V
25 velpw 4544 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
2625anbi1i 625 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)) ↔ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
2726abbii 2886 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))}
28 ssab2 4055 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ⊆ 𝒫 𝐴
2927, 28eqsstrri 4002 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ⊆ 𝒫 𝐴
3024, 29ssexi 5226 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ∈ V
3121, 22, 30fvmpt 6768 . . 3 (𝐾 ∈ V → (PSubSp‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
322, 31syl5eq 2868 . 2 (𝐾 ∈ V → 𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
331, 32syl 17 1 (𝐾𝐵𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  Vcvv 3494  wss 3936  𝒫 cpw 4539   class class class wbr 5066  cfv 6355  (class class class)co 7156  lecple 16572  joincjn 17554  Atomscatm 36414  PSubSpcpsubsp 36647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-psubsp 36654
This theorem is referenced by:  ispsubsp  36896
  Copyright terms: Public domain W3C validator