Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspset Structured version   Visualization version   GIF version

Theorem psubspset 39126
Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l ≀ = (leβ€˜πΎ)
psubspset.j ∨ = (joinβ€˜πΎ)
psubspset.a 𝐴 = (Atomsβ€˜πΎ)
psubspset.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
psubspset (𝐾 ∈ 𝐡 β†’ 𝑆 = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
Distinct variable groups:   𝑠,π‘Ÿ,𝐴   π‘ž,𝑝,π‘Ÿ,𝑠,𝐾
Allowed substitution hints:   𝐴(π‘ž,𝑝)   𝐡(𝑠,π‘Ÿ,π‘ž,𝑝)   𝑆(𝑠,π‘Ÿ,π‘ž,𝑝)   ∨ (𝑠,π‘Ÿ,π‘ž,𝑝)   ≀ (𝑠,π‘Ÿ,π‘ž,𝑝)

Proof of Theorem psubspset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (𝐾 ∈ 𝐡 β†’ 𝐾 ∈ V)
2 psubspset.s . . 3 𝑆 = (PSubSpβ€˜πΎ)
3 fveq2 6884 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
4 psubspset.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2784 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
65sseq2d 4009 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑠 βŠ† (Atomsβ€˜π‘˜) ↔ 𝑠 βŠ† 𝐴))
7 fveq2 6884 . . . . . . . . . . . . 13 (π‘˜ = 𝐾 β†’ (joinβ€˜π‘˜) = (joinβ€˜πΎ))
8 psubspset.j . . . . . . . . . . . . 13 ∨ = (joinβ€˜πΎ)
97, 8eqtr4di 2784 . . . . . . . . . . . 12 (π‘˜ = 𝐾 β†’ (joinβ€˜π‘˜) = ∨ )
109oveqd 7421 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (𝑝(joinβ€˜π‘˜)π‘ž) = (𝑝 ∨ π‘ž))
1110breq2d 5153 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) ↔ π‘Ÿ(leβ€˜π‘˜)(𝑝 ∨ π‘ž)))
12 fveq2 6884 . . . . . . . . . . . 12 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
13 psubspset.l . . . . . . . . . . . 12 ≀ = (leβ€˜πΎ)
1412, 13eqtr4di 2784 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1514breqd 5152 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (π‘Ÿ(leβ€˜π‘˜)(𝑝 ∨ π‘ž) ↔ π‘Ÿ ≀ (𝑝 ∨ π‘ž)))
1611, 15bitrd 279 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) ↔ π‘Ÿ ≀ (𝑝 ∨ π‘ž)))
1716imbi1d 341 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠) ↔ (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠)))
185, 17raleqbidv 3336 . . . . . . 7 (π‘˜ = 𝐾 β†’ (βˆ€π‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠) ↔ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠)))
19182ralbidv 3212 . . . . . 6 (π‘˜ = 𝐾 β†’ (βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠) ↔ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠)))
206, 19anbi12d 630 . . . . 5 (π‘˜ = 𝐾 β†’ ((𝑠 βŠ† (Atomsβ€˜π‘˜) ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠)) ↔ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))))
2120abbidv 2795 . . . 4 (π‘˜ = 𝐾 β†’ {𝑠 ∣ (𝑠 βŠ† (Atomsβ€˜π‘˜) ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠))} = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
22 df-psubsp 38885 . . . 4 PSubSp = (π‘˜ ∈ V ↦ {𝑠 ∣ (𝑠 βŠ† (Atomsβ€˜π‘˜) ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
234fvexi 6898 . . . . . 6 𝐴 ∈ V
2423pwex 5371 . . . . 5 𝒫 𝐴 ∈ V
25 velpw 4602 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴 ↔ 𝑠 βŠ† 𝐴)
2625anbi1i 623 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠)) ↔ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠)))
2726abbii 2796 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))} = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))}
28 ssab2 4071 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))} βŠ† 𝒫 𝐴
2927, 28eqsstrri 4012 . . . . 5 {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))} βŠ† 𝒫 𝐴
3024, 29ssexi 5315 . . . 4 {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))} ∈ V
3121, 22, 30fvmpt 6991 . . 3 (𝐾 ∈ V β†’ (PSubSpβ€˜πΎ) = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
322, 31eqtrid 2778 . 2 (𝐾 ∈ V β†’ 𝑆 = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
331, 32syl 17 1 (𝐾 ∈ 𝐡 β†’ 𝑆 = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {cab 2703  βˆ€wral 3055  Vcvv 3468   βŠ† wss 3943  π’« cpw 4597   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  lecple 17211  joincjn 18274  Atomscatm 38644  PSubSpcpsubsp 38878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-psubsp 38885
This theorem is referenced by:  ispsubsp  39127
  Copyright terms: Public domain W3C validator