Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspset Structured version   Visualization version   GIF version

Theorem psubspset 39863
Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspset (𝐾𝐵𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
Distinct variable groups:   𝑠,𝑟,𝐴   𝑞,𝑝,𝑟,𝑠,𝐾
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐵(𝑠,𝑟,𝑞,𝑝)   𝑆(𝑠,𝑟,𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem psubspset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
3 fveq2 6828 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubspset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2786 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 3963 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6828 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
8 psubspset.j . . . . . . . . . . . . 13 = (join‘𝐾)
97, 8eqtr4di 2786 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
109oveqd 7369 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝(join‘𝑘)𝑞) = (𝑝 𝑞))
1110breq2d 5105 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟(le‘𝑘)(𝑝 𝑞)))
12 fveq2 6828 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
13 psubspset.l . . . . . . . . . . . 12 = (le‘𝐾)
1412, 13eqtr4di 2786 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
1514breqd 5104 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝 𝑞) ↔ 𝑟 (𝑝 𝑞)))
1611, 15bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟 (𝑝 𝑞)))
1716imbi1d 341 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
185, 17raleqbidv 3313 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
19182ralbidv 3197 . . . . . 6 (𝑘 = 𝐾 → (∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
206, 19anbi12d 632 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠)) ↔ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))))
2120abbidv 2799 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))} = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
22 df-psubsp 39622 . . . 4 PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))})
234fvexi 6842 . . . . . 6 𝐴 ∈ V
2423pwex 5320 . . . . 5 𝒫 𝐴 ∈ V
25 velpw 4554 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
2625anbi1i 624 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)) ↔ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
2726abbii 2800 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))}
28 ssab2 4028 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ⊆ 𝒫 𝐴
2927, 28eqsstrri 3978 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ⊆ 𝒫 𝐴
3024, 29ssexi 5262 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ∈ V
3121, 22, 30fvmpt 6935 . . 3 (𝐾 ∈ V → (PSubSp‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
322, 31eqtrid 2780 . 2 (𝐾 ∈ V → 𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
331, 32syl 17 1 (𝐾𝐵𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  Vcvv 3437  wss 3898  𝒫 cpw 4549   class class class wbr 5093  cfv 6486  (class class class)co 7352  lecple 17170  joincjn 18219  Atomscatm 39382  PSubSpcpsubsp 39615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-psubsp 39622
This theorem is referenced by:  ispsubsp  39864
  Copyright terms: Public domain W3C validator