Detailed syntax breakdown of Definition df-ptfin
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cptfin 23512 | . 2
class
PtFin | 
| 2 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 3 |  | vz | . . . . . . 7
setvar 𝑧 | 
| 4 | 2, 3 | wel 2108 | . . . . . 6
wff 𝑦 ∈ 𝑧 | 
| 5 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 6 | 5 | cv 1538 | . . . . . 6
class 𝑥 | 
| 7 | 4, 3, 6 | crab 3435 | . . . . 5
class {𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} | 
| 8 |  | cfn 8986 | . . . . 5
class
Fin | 
| 9 | 7, 8 | wcel 2107 | . . . 4
wff {𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin | 
| 10 | 6 | cuni 4906 | . . . 4
class ∪ 𝑥 | 
| 11 | 9, 2, 10 | wral 3060 | . . 3
wff
∀𝑦 ∈
∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin | 
| 12 | 11, 5 | cab 2713 | . 2
class {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} | 
| 13 | 1, 12 | wceq 1539 | 1
wff PtFin =
{𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} |