Detailed syntax breakdown of Definition df-ref
| Step | Hyp | Ref
| Expression |
| 1 | | cref 23510 |
. 2
class
Ref |
| 2 | | vy |
. . . . . . 7
setvar 𝑦 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑦 |
| 4 | 3 | cuni 4907 |
. . . . 5
class ∪ 𝑦 |
| 5 | | vx |
. . . . . . 7
setvar 𝑥 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑥 |
| 7 | 6 | cuni 4907 |
. . . . 5
class ∪ 𝑥 |
| 8 | 4, 7 | wceq 1540 |
. . . 4
wff ∪ 𝑦 =
∪ 𝑥 |
| 9 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 11 | | vw |
. . . . . . . 8
setvar 𝑤 |
| 12 | 11 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 13 | 10, 12 | wss 3951 |
. . . . . 6
wff 𝑧 ⊆ 𝑤 |
| 14 | 13, 11, 3 | wrex 3070 |
. . . . 5
wff
∃𝑤 ∈
𝑦 𝑧 ⊆ 𝑤 |
| 15 | 14, 9, 6 | wral 3061 |
. . . 4
wff
∀𝑧 ∈
𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 |
| 16 | 8, 15 | wa 395 |
. . 3
wff (∪ 𝑦 =
∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) |
| 17 | 16, 5, 2 | copab 5205 |
. 2
class
{〈𝑥, 𝑦〉 ∣ (∪ 𝑦 =
∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} |
| 18 | 1, 17 | wceq 1540 |
1
wff Ref =
{〈𝑥, 𝑦〉 ∣ (∪ 𝑦 =
∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} |