| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isptfin | Structured version Visualization version GIF version | ||
| Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| isptfin.1 | ⊢ 𝑋 = ∪ 𝐴 |
| Ref | Expression |
|---|---|
| isptfin | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4885 | . . . 4 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴) | |
| 2 | isptfin.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = 𝑋) |
| 4 | rabeq 3423 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} = {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | eleq1d 2814 | . . 3 ⊢ (𝑎 = 𝐴 → ({𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} ∈ Fin ↔ {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) |
| 6 | 3, 5 | raleqbidv 3321 | . 2 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ ∪ 𝑎{𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} ∈ Fin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) |
| 7 | df-ptfin 23400 | . 2 ⊢ PtFin = {𝑎 ∣ ∀𝑥 ∈ ∪ 𝑎{𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} ∈ Fin} | |
| 8 | 6, 7 | elab2g 3650 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∪ cuni 4874 Fincfn 8921 PtFincptfin 23397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-ss 3934 df-uni 4875 df-ptfin 23400 |
| This theorem is referenced by: finptfin 23412 ptfinfin 23413 lfinpfin 23418 |
| Copyright terms: Public domain | W3C validator |