MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isptfin Structured version   Visualization version   GIF version

Theorem isptfin 23403
Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
isptfin.1 𝑋 = 𝐴
Assertion
Ref Expression
isptfin (𝐴𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥𝑋 {𝑦𝐴𝑥𝑦} ∈ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem isptfin
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 unieq 4882 . . . 4 (𝑎 = 𝐴 𝑎 = 𝐴)
2 isptfin.1 . . . 4 𝑋 = 𝐴
31, 2eqtr4di 2782 . . 3 (𝑎 = 𝐴 𝑎 = 𝑋)
4 rabeq 3420 . . . 4 (𝑎 = 𝐴 → {𝑦𝑎𝑥𝑦} = {𝑦𝐴𝑥𝑦})
54eleq1d 2813 . . 3 (𝑎 = 𝐴 → ({𝑦𝑎𝑥𝑦} ∈ Fin ↔ {𝑦𝐴𝑥𝑦} ∈ Fin))
63, 5raleqbidv 3319 . 2 (𝑎 = 𝐴 → (∀𝑥 𝑎{𝑦𝑎𝑥𝑦} ∈ Fin ↔ ∀𝑥𝑋 {𝑦𝐴𝑥𝑦} ∈ Fin))
7 df-ptfin 23393 . 2 PtFin = {𝑎 ∣ ∀𝑥 𝑎{𝑦𝑎𝑥𝑦} ∈ Fin}
86, 7elab2g 3647 1 (𝐴𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥𝑋 {𝑦𝐴𝑥𝑦} ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3405   cuni 4871  Fincfn 8918  PtFincptfin 23390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-ss 3931  df-uni 4872  df-ptfin 23393
This theorem is referenced by:  finptfin  23405  ptfinfin  23406  lfinpfin  23411
  Copyright terms: Public domain W3C validator