|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isptfin | Structured version Visualization version GIF version | ||
| Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) | 
| Ref | Expression | 
|---|---|
| isptfin.1 | ⊢ 𝑋 = ∪ 𝐴 | 
| Ref | Expression | 
|---|---|
| isptfin | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unieq 4917 | . . . 4 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴) | |
| 2 | isptfin.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 3 | 1, 2 | eqtr4di 2794 | . . 3 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = 𝑋) | 
| 4 | rabeq 3450 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} = {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | eleq1d 2825 | . . 3 ⊢ (𝑎 = 𝐴 → ({𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} ∈ Fin ↔ {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | 
| 6 | 3, 5 | raleqbidv 3345 | . 2 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ ∪ 𝑎{𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} ∈ Fin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | 
| 7 | df-ptfin 23515 | . 2 ⊢ PtFin = {𝑎 ∣ ∀𝑥 ∈ ∪ 𝑎{𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦} ∈ Fin} | |
| 8 | 6, 7 | elab2g 3679 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 ∪ cuni 4906 Fincfn 8986 PtFincptfin 23512 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-ss 3967 df-uni 4907 df-ptfin 23515 | 
| This theorem is referenced by: finptfin 23527 ptfinfin 23528 lfinpfin 23533 | 
| Copyright terms: Public domain | W3C validator |