Detailed syntax breakdown of Definition df-ram
| Step | Hyp | Ref
| Expression |
| 1 | | cram 17024 |
. 2
class
Ramsey |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cn0 12506 |
. . 3
class
ℕ0 |
| 5 | | cvv 3464 |
. . 3
class
V |
| 6 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 8 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 9 | 8 | cv 1539 |
. . . . . . . . 9
class 𝑠 |
| 10 | | chash 14353 |
. . . . . . . . 9
class
♯ |
| 11 | 9, 10 | cfv 6536 |
. . . . . . . 8
class
(♯‘𝑠) |
| 12 | | cle 11275 |
. . . . . . . 8
class
≤ |
| 13 | 7, 11, 12 | wbr 5124 |
. . . . . . 7
wff 𝑛 ≤ (♯‘𝑠) |
| 14 | | vc |
. . . . . . . . . . . . . 14
setvar 𝑐 |
| 15 | 14 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑐 |
| 16 | 3 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑟 |
| 17 | 15, 16 | cfv 6536 |
. . . . . . . . . . . 12
class (𝑟‘𝑐) |
| 18 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑥 |
| 20 | 19, 10 | cfv 6536 |
. . . . . . . . . . . 12
class
(♯‘𝑥) |
| 21 | 17, 20, 12 | wbr 5124 |
. . . . . . . . . . 11
wff (𝑟‘𝑐) ≤ (♯‘𝑥) |
| 22 | | vy |
. . . . . . . . . . . . . . . 16
setvar 𝑦 |
| 23 | 22 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑦 |
| 24 | 23, 10 | cfv 6536 |
. . . . . . . . . . . . . 14
class
(♯‘𝑦) |
| 25 | 2 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑚 |
| 26 | 24, 25 | wceq 1540 |
. . . . . . . . . . . . 13
wff
(♯‘𝑦) =
𝑚 |
| 27 | | vf |
. . . . . . . . . . . . . . . 16
setvar 𝑓 |
| 28 | 27 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑓 |
| 29 | 23, 28 | cfv 6536 |
. . . . . . . . . . . . . 14
class (𝑓‘𝑦) |
| 30 | 29, 15 | wceq 1540 |
. . . . . . . . . . . . 13
wff (𝑓‘𝑦) = 𝑐 |
| 31 | 26, 30 | wi 4 |
. . . . . . . . . . . 12
wff
((♯‘𝑦) =
𝑚 → (𝑓‘𝑦) = 𝑐) |
| 32 | 19 | cpw 4580 |
. . . . . . . . . . . 12
class 𝒫
𝑥 |
| 33 | 31, 22, 32 | wral 3052 |
. . . . . . . . . . 11
wff
∀𝑦 ∈
𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐) |
| 34 | 21, 33 | wa 395 |
. . . . . . . . . 10
wff ((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) |
| 35 | 9 | cpw 4580 |
. . . . . . . . . 10
class 𝒫
𝑠 |
| 36 | 34, 18, 35 | wrex 3061 |
. . . . . . . . 9
wff
∃𝑥 ∈
𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) |
| 37 | 16 | cdm 5659 |
. . . . . . . . 9
class dom 𝑟 |
| 38 | 36, 14, 37 | wrex 3061 |
. . . . . . . 8
wff
∃𝑐 ∈ dom
𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) |
| 39 | 26, 22, 35 | crab 3420 |
. . . . . . . . 9
class {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} |
| 40 | | cmap 8845 |
. . . . . . . . 9
class
↑m |
| 41 | 37, 39, 40 | co 7410 |
. . . . . . . 8
class (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚}) |
| 42 | 38, 27, 41 | wral 3052 |
. . . . . . 7
wff
∀𝑓 ∈
(dom 𝑟 ↑m
{𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) |
| 43 | 13, 42 | wi 4 |
. . . . . 6
wff (𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
| 44 | 43, 8 | wal 1538 |
. . . . 5
wff
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
| 45 | 44, 6, 4 | crab 3420 |
. . . 4
class {𝑛 ∈ ℕ0
∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))} |
| 46 | | cxr 11273 |
. . . 4
class
ℝ* |
| 47 | | clt 11274 |
. . . 4
class
< |
| 48 | 45, 46, 47 | cinf 9458 |
. . 3
class
inf({𝑛 ∈
ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
) |
| 49 | 2, 3, 4, 5, 48 | cmpo 7412 |
. 2
class (𝑚 ∈ ℕ0,
𝑟 ∈ V ↦
inf({𝑛 ∈
ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |
| 50 | 1, 49 | wceq 1540 |
1
wff Ramsey =
(𝑚 ∈
ℕ0, 𝑟
∈ V ↦ inf({𝑛
∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |