Detailed syntax breakdown of Definition df-ram
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cram 17038 | . 2
class 
Ramsey | 
| 2 |  | vm | . . 3
setvar 𝑚 | 
| 3 |  | vr | . . 3
setvar 𝑟 | 
| 4 |  | cn0 12528 | . . 3
class
ℕ0 | 
| 5 |  | cvv 3479 | . . 3
class
V | 
| 6 |  | vn | . . . . . . . . 9
setvar 𝑛 | 
| 7 | 6 | cv 1538 | . . . . . . . 8
class 𝑛 | 
| 8 |  | vs | . . . . . . . . . 10
setvar 𝑠 | 
| 9 | 8 | cv 1538 | . . . . . . . . 9
class 𝑠 | 
| 10 |  | chash 14370 | . . . . . . . . 9
class
♯ | 
| 11 | 9, 10 | cfv 6560 | . . . . . . . 8
class
(♯‘𝑠) | 
| 12 |  | cle 11297 | . . . . . . . 8
class 
≤ | 
| 13 | 7, 11, 12 | wbr 5142 | . . . . . . 7
wff 𝑛 ≤ (♯‘𝑠) | 
| 14 |  | vc | . . . . . . . . . . . . . 14
setvar 𝑐 | 
| 15 | 14 | cv 1538 | . . . . . . . . . . . . 13
class 𝑐 | 
| 16 | 3 | cv 1538 | . . . . . . . . . . . . 13
class 𝑟 | 
| 17 | 15, 16 | cfv 6560 | . . . . . . . . . . . 12
class (𝑟‘𝑐) | 
| 18 |  | vx | . . . . . . . . . . . . . 14
setvar 𝑥 | 
| 19 | 18 | cv 1538 | . . . . . . . . . . . . 13
class 𝑥 | 
| 20 | 19, 10 | cfv 6560 | . . . . . . . . . . . 12
class
(♯‘𝑥) | 
| 21 | 17, 20, 12 | wbr 5142 | . . . . . . . . . . 11
wff (𝑟‘𝑐) ≤ (♯‘𝑥) | 
| 22 |  | vy | . . . . . . . . . . . . . . . 16
setvar 𝑦 | 
| 23 | 22 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑦 | 
| 24 | 23, 10 | cfv 6560 | . . . . . . . . . . . . . 14
class
(♯‘𝑦) | 
| 25 | 2 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑚 | 
| 26 | 24, 25 | wceq 1539 | . . . . . . . . . . . . 13
wff
(♯‘𝑦) =
𝑚 | 
| 27 |  | vf | . . . . . . . . . . . . . . . 16
setvar 𝑓 | 
| 28 | 27 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑓 | 
| 29 | 23, 28 | cfv 6560 | . . . . . . . . . . . . . 14
class (𝑓‘𝑦) | 
| 30 | 29, 15 | wceq 1539 | . . . . . . . . . . . . 13
wff (𝑓‘𝑦) = 𝑐 | 
| 31 | 26, 30 | wi 4 | . . . . . . . . . . . 12
wff
((♯‘𝑦) =
𝑚 → (𝑓‘𝑦) = 𝑐) | 
| 32 | 19 | cpw 4599 | . . . . . . . . . . . 12
class 𝒫
𝑥 | 
| 33 | 31, 22, 32 | wral 3060 | . . . . . . . . . . 11
wff
∀𝑦 ∈
𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐) | 
| 34 | 21, 33 | wa 395 | . . . . . . . . . 10
wff ((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) | 
| 35 | 9 | cpw 4599 | . . . . . . . . . 10
class 𝒫
𝑠 | 
| 36 | 34, 18, 35 | wrex 3069 | . . . . . . . . 9
wff
∃𝑥 ∈
𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) | 
| 37 | 16 | cdm 5684 | . . . . . . . . 9
class dom 𝑟 | 
| 38 | 36, 14, 37 | wrex 3069 | . . . . . . . 8
wff
∃𝑐 ∈ dom
𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) | 
| 39 | 26, 22, 35 | crab 3435 | . . . . . . . . 9
class {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} | 
| 40 |  | cmap 8867 | . . . . . . . . 9
class 
↑m | 
| 41 | 37, 39, 40 | co 7432 | . . . . . . . 8
class (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚}) | 
| 42 | 38, 27, 41 | wral 3060 | . . . . . . 7
wff
∀𝑓 ∈
(dom 𝑟 ↑m
{𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) | 
| 43 | 13, 42 | wi 4 | . . . . . 6
wff (𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) | 
| 44 | 43, 8 | wal 1537 | . . . . 5
wff
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) | 
| 45 | 44, 6, 4 | crab 3435 | . . . 4
class {𝑛 ∈ ℕ0
∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))} | 
| 46 |  | cxr 11295 | . . . 4
class
ℝ* | 
| 47 |  | clt 11296 | . . . 4
class 
< | 
| 48 | 45, 46, 47 | cinf 9482 | . . 3
class
inf({𝑛 ∈
ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
) | 
| 49 | 2, 3, 4, 5, 48 | cmpo 7434 | . 2
class (𝑚 ∈ ℕ0,
𝑟 ∈ V ↦
inf({𝑛 ∈
ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) | 
| 50 | 1, 49 | wceq 1539 | 1
wff  Ramsey =
(𝑚 ∈
ℕ0, 𝑟
∈ V ↦ inf({𝑛
∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |