| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashbcval | Structured version Visualization version GIF version | ||
| Description: Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| Ref | Expression |
|---|---|
| hashbcval | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | pwexg 5320 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐴 ∈ V) |
| 4 | rabexg 5279 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) |
| 6 | fveqeq2 6835 | . . . . . 6 ⊢ (𝑏 = 𝑥 → ((♯‘𝑏) = 𝑖 ↔ (♯‘𝑥) = 𝑖)) | |
| 7 | 6 | cbvrabv 3407 | . . . . 5 ⊢ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} |
| 8 | simpl 482 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → 𝑎 = 𝐴) | |
| 9 | 8 | pweqd 4570 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → 𝒫 𝑎 = 𝒫 𝐴) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → 𝑖 = 𝑁) | |
| 11 | 10 | eqeq2d 2740 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → ((♯‘𝑥) = 𝑖 ↔ (♯‘𝑥) = 𝑁)) |
| 12 | 9, 11 | rabeqbidv 3415 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
| 13 | 7, 12 | eqtrid 2776 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
| 14 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
| 15 | 13, 14 | ovmpoga 7507 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
| 16 | 5, 15 | mpd3an3 1464 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
| 17 | 1, 16 | sylan 580 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 𝒫 cpw 4553 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℕ0cn0 12402 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: hashbccl 16933 hashbcss 16934 hashbc0 16935 hashbc2 16936 ramval 16938 ram0 16952 ramub1lem1 16956 ramub1lem2 16957 |
| Copyright terms: Public domain | W3C validator |