MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcval Structured version   Visualization version   GIF version

Theorem hashbcval 16916
Description: Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcval ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
Distinct variable groups:   𝑥,𝐶   𝑎,𝑏,𝑖,𝑥   𝐴,𝑎,𝑖,𝑥   𝑁,𝑎,𝑖,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcval
StepHypRef Expression
1 elex 3458 . 2 (𝐴𝑉𝐴 ∈ V)
2 pwexg 5318 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
32adantr 480 . . . 4 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐴 ∈ V)
4 rabexg 5277 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V)
53, 4syl 17 . . 3 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V)
6 fveqeq2 6837 . . . . . 6 (𝑏 = 𝑥 → ((♯‘𝑏) = 𝑖 ↔ (♯‘𝑥) = 𝑖))
76cbvrabv 3406 . . . . 5 {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖}
8 simpl 482 . . . . . . 7 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝑎 = 𝐴)
98pweqd 4566 . . . . . 6 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝒫 𝑎 = 𝒫 𝐴)
10 simpr 484 . . . . . . 7 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝑖 = 𝑁)
1110eqeq2d 2744 . . . . . 6 ((𝑎 = 𝐴𝑖 = 𝑁) → ((♯‘𝑥) = 𝑖 ↔ (♯‘𝑥) = 𝑁))
129, 11rabeqbidv 3414 . . . . 5 ((𝑎 = 𝐴𝑖 = 𝑁) → {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
137, 12eqtrid 2780 . . . 4 ((𝑎 = 𝐴𝑖 = 𝑁) → {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
14 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
1513, 14ovmpoga 7506 . . 3 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
165, 15mpd3an3 1464 . 2 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
171, 16sylan 580 1 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  𝒫 cpw 4549  cfv 6486  (class class class)co 7352  cmpo 7354  0cn0 12388  chash 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357
This theorem is referenced by:  hashbccl  16917  hashbcss  16918  hashbc0  16919  hashbc2  16920  ramval  16922  ram0  16936  ramub1lem1  16940  ramub1lem2  16941
  Copyright terms: Public domain W3C validator