MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcval Structured version   Visualization version   GIF version

Theorem hashbcval 16110
Description: Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcval ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
Distinct variable groups:   𝑥,𝐶   𝑎,𝑏,𝑖,𝑥   𝐴,𝑎,𝑖,𝑥   𝑁,𝑎,𝑖,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcval
StepHypRef Expression
1 elex 3414 . 2 (𝐴𝑉𝐴 ∈ V)
2 pwexg 5090 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
32adantr 474 . . . 4 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐴 ∈ V)
4 rabexg 5048 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V)
53, 4syl 17 . . 3 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V)
6 fveqeq2 6455 . . . . . 6 (𝑏 = 𝑥 → ((♯‘𝑏) = 𝑖 ↔ (♯‘𝑥) = 𝑖))
76cbvrabv 3396 . . . . 5 {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖}
8 simpl 476 . . . . . . 7 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝑎 = 𝐴)
98pweqd 4384 . . . . . 6 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝒫 𝑎 = 𝒫 𝐴)
10 simpr 479 . . . . . . 7 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝑖 = 𝑁)
1110eqeq2d 2788 . . . . . 6 ((𝑎 = 𝐴𝑖 = 𝑁) → ((♯‘𝑥) = 𝑖 ↔ (♯‘𝑥) = 𝑁))
129, 11rabeqbidv 3392 . . . . 5 ((𝑎 = 𝐴𝑖 = 𝑁) → {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
137, 12syl5eq 2826 . . . 4 ((𝑎 = 𝐴𝑖 = 𝑁) → {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
14 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
1513, 14ovmpt2ga 7067 . . 3 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
165, 15mpd3an3 1535 . 2 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
171, 16sylan 575 1 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  𝒫 cpw 4379  cfv 6135  (class class class)co 6922  cmpt2 6924  0cn0 11642  chash 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927
This theorem is referenced by:  hashbccl  16111  hashbcss  16112  hashbc0  16113  hashbc2  16114  ramval  16116  ram0  16130  ramub1lem1  16134  ramub1lem2  16135
  Copyright terms: Public domain W3C validator