![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashbcval | Structured version Visualization version GIF version |
Description: Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
Ref | Expression |
---|---|
hashbcval | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3414 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | pwexg 5090 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 2 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐴 ∈ V) |
4 | rabexg 5048 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) |
6 | fveqeq2 6455 | . . . . . 6 ⊢ (𝑏 = 𝑥 → ((♯‘𝑏) = 𝑖 ↔ (♯‘𝑥) = 𝑖)) | |
7 | 6 | cbvrabv 3396 | . . . . 5 ⊢ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} |
8 | simpl 476 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → 𝑎 = 𝐴) | |
9 | 8 | pweqd 4384 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → 𝒫 𝑎 = 𝒫 𝐴) |
10 | simpr 479 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → 𝑖 = 𝑁) | |
11 | 10 | eqeq2d 2788 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → ((♯‘𝑥) = 𝑖 ↔ (♯‘𝑥) = 𝑁)) |
12 | 9, 11 | rabeqbidv 3392 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
13 | 7, 12 | syl5eq 2826 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑖 = 𝑁) → {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
14 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
15 | 13, 14 | ovmpt2ga 7067 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
16 | 5, 15 | mpd3an3 1535 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
17 | 1, 16 | sylan 575 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 𝒫 cpw 4379 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 ℕ0cn0 11642 ♯chash 13435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: hashbccl 16111 hashbcss 16112 hashbc0 16113 hashbc2 16114 ramval 16116 ram0 16130 ramub1lem1 16134 ramub1lem2 16135 |
Copyright terms: Public domain | W3C validator |