MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtlecl Structured version   Visualization version   GIF version

Theorem ramtlecl 16966
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
ramtlecl.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}
Assertion
Ref Expression
ramtlecl (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Distinct variable groups:   𝑛,𝑠,𝑀   𝜑,𝑛   𝑇,𝑛,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem ramtlecl
StepHypRef Expression
1 breq1 5144 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠)))
21imbi1d 340 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑)))
32albidv 1915 . . . . . 6 (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)))
4 ramtlecl.t . . . . . 6 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}
53, 4elrab2 3677 . . . . 5 (𝑀𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)))
65simplbi 496 . . . 4 (𝑀𝑇𝑀 ∈ ℕ0)
7 eluznn0 12929 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
87ex 411 . . . . 5 (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℕ0))
98ssrdv 3978 . . . 4 (𝑀 ∈ ℕ0 → (ℤ𝑀) ⊆ ℕ0)
106, 9syl 17 . . 3 (𝑀𝑇 → (ℤ𝑀) ⊆ ℕ0)
115simprbi 495 . . . . 5 (𝑀𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))
12 eluzle 12863 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑀𝑛)
1312adantl 480 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀𝑛)
14 nn0ssre 12504 . . . . . . . . . . . 12 0 ⊆ ℝ
15 ressxr 11286 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
1614, 15sstri 3981 . . . . . . . . . . 11 0 ⊆ ℝ*
176adantr 479 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1816, 17sselid 3970 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ*)
196, 7sylan 578 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
2016, 19sselid 3970 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℝ*)
21 vex 3467 . . . . . . . . . . 11 𝑠 ∈ V
22 hashxrcl 14346 . . . . . . . . . . 11 (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*)
2321, 22mp1i 13 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (♯‘𝑠) ∈ ℝ*)
24 xrletr 13167 . . . . . . . . . 10 ((𝑀 ∈ ℝ*𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀𝑛𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠)))
2518, 20, 23, 24syl3anc 1368 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀𝑛𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠)))
2613, 25mpand 693 . . . . . . . 8 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠)))
2726imim1d 82 . . . . . . 7 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑)))
2827ralrimdva 3144 . . . . . 6 (𝑀𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)))
2928alimdv 1911 . . . . 5 (𝑀𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)))
3011, 29mpd 15 . . . 4 (𝑀𝑇 → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))
31 ralcom4 3274 . . . 4 (∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))
3230, 31sylibr 233 . . 3 (𝑀𝑇 → ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))
33 ssrab 4060 . . 3 ((ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)))
3410, 32, 33sylanbrc 581 . 2 (𝑀𝑇 → (ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)})
3534, 4sseqtrrdi 4023 1 (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531   = wceq 1533  wcel 2098  wral 3051  {crab 3419  Vcvv 3463  wss 3939   class class class wbr 5141  cfv 6541  cr 11135  *cxr 11275  cle 11277  0cn0 12500  cuz 12850  chash 14319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-hash 14320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator