| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ramtlecl | Structured version Visualization version GIF version | ||
| Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| Ref | Expression |
|---|---|
| ramtlecl.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} |
| Ref | Expression |
|---|---|
| ramtlecl | ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5113 | . . . . . . . 8 ⊢ (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠))) | |
| 2 | 1 | imbi1d 341 | . . . . . . 7 ⊢ (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑))) |
| 3 | 2 | albidv 1920 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
| 4 | ramtlecl.t | . . . . . 6 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} | |
| 5 | 3, 4 | elrab2 3665 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
| 6 | 5 | simplbi 497 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → 𝑀 ∈ ℕ0) |
| 7 | eluznn0 12883 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) | |
| 8 | 7 | ex 412 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℕ0)) |
| 9 | 8 | ssrdv 3955 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ ℕ0) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ ℕ0) |
| 11 | 5 | simprbi 496 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)) |
| 12 | eluzle 12813 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑛) | |
| 13 | 12 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑛) |
| 14 | nn0ssre 12453 | . . . . . . . . . . . 12 ⊢ ℕ0 ⊆ ℝ | |
| 15 | ressxr 11225 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℝ* | |
| 16 | 14, 15 | sstri 3959 | . . . . . . . . . . 11 ⊢ ℕ0 ⊆ ℝ* |
| 17 | 6 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) |
| 18 | 16, 17 | sselid 3947 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ*) |
| 19 | 6, 7 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) |
| 20 | 16, 19 | sselid 3947 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℝ*) |
| 21 | vex 3454 | . . . . . . . . . . 11 ⊢ 𝑠 ∈ V | |
| 22 | hashxrcl 14329 | . . . . . . . . . . 11 ⊢ (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*) | |
| 23 | 21, 22 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (♯‘𝑠) ∈ ℝ*) |
| 24 | xrletr 13125 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) | |
| 25 | 18, 20, 23, 24 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) |
| 26 | 13, 25 | mpand 695 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠))) |
| 27 | 26 | imim1d 82 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑))) |
| 28 | 27 | ralrimdva 3134 | . . . . . 6 ⊢ (𝑀 ∈ 𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
| 29 | 28 | alimdv 1916 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
| 30 | 11, 29 | mpd 15 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
| 31 | ralcom4 3264 | . . . 4 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) | |
| 32 | 30, 31 | sylibr 234 | . . 3 ⊢ (𝑀 ∈ 𝑇 → ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
| 33 | ssrab 4039 | . . 3 ⊢ ((ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ≥‘𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))) | |
| 34 | 10, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}) |
| 35 | 34, 4 | sseqtrrdi 3991 | 1 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 ℝcr 11074 ℝ*cxr 11214 ≤ cle 11216 ℕ0cn0 12449 ℤ≥cuz 12800 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-hash 14303 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |