MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtlecl Structured version   Visualization version   GIF version

Theorem ramtlecl 15917
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
ramtlecl.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}
Assertion
Ref Expression
ramtlecl (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Distinct variable groups:   𝑛,𝑠,𝑀   𝜑,𝑛   𝑇,𝑛,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem ramtlecl
StepHypRef Expression
1 breq1 4847 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠)))
21imbi1d 332 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑)))
32albidv 2011 . . . . . 6 (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)))
4 ramtlecl.t . . . . . 6 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}
53, 4elrab2 3562 . . . . 5 (𝑀𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)))
65simplbi 487 . . . 4 (𝑀𝑇𝑀 ∈ ℕ0)
7 eluznn0 11972 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
87ex 399 . . . . 5 (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℕ0))
98ssrdv 3804 . . . 4 (𝑀 ∈ ℕ0 → (ℤ𝑀) ⊆ ℕ0)
106, 9syl 17 . . 3 (𝑀𝑇 → (ℤ𝑀) ⊆ ℕ0)
115simprbi 486 . . . . 5 (𝑀𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))
12 eluzle 11913 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑀𝑛)
1312adantl 469 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀𝑛)
14 nn0ssre 11559 . . . . . . . . . . . 12 0 ⊆ ℝ
15 ressxr 10364 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
1614, 15sstri 3807 . . . . . . . . . . 11 0 ⊆ ℝ*
176adantr 468 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1816, 17sseldi 3796 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ*)
196, 7sylan 571 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
2016, 19sseldi 3796 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℝ*)
21 vex 3394 . . . . . . . . . . 11 𝑠 ∈ V
22 hashxrcl 13362 . . . . . . . . . . 11 (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*)
2321, 22mp1i 13 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (♯‘𝑠) ∈ ℝ*)
24 xrletr 12203 . . . . . . . . . 10 ((𝑀 ∈ ℝ*𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀𝑛𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠)))
2518, 20, 23, 24syl3anc 1483 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀𝑛𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠)))
2613, 25mpand 678 . . . . . . . 8 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠)))
2726imim1d 82 . . . . . . 7 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑)))
2827ralrimdva 3157 . . . . . 6 (𝑀𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)))
2928alimdv 2007 . . . . 5 (𝑀𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)))
3011, 29mpd 15 . . . 4 (𝑀𝑇 → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))
31 ralcom4 3418 . . . 4 (∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))
3230, 31sylibr 225 . . 3 (𝑀𝑇 → ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))
33 ssrab 3877 . . 3 ((ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)))
3410, 32, 33sylanbrc 574 . 2 (𝑀𝑇 → (ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)})
3534, 4syl6sseqr 3849 1 (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1635   = wceq 1637  wcel 2156  wral 3096  {crab 3100  Vcvv 3391  wss 3769   class class class wbr 4844  cfv 6097  cr 10216  *cxr 10354  cle 10356  0cn0 11555  cuz 11900  chash 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-n0 11556  df-xnn0 11626  df-z 11640  df-uz 11901  df-hash 13334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator