| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ramtlecl | Structured version Visualization version GIF version | ||
| Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| Ref | Expression |
|---|---|
| ramtlecl.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} |
| Ref | Expression |
|---|---|
| ramtlecl | ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5094 | . . . . . . . 8 ⊢ (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠))) | |
| 2 | 1 | imbi1d 341 | . . . . . . 7 ⊢ (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑))) |
| 3 | 2 | albidv 1921 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
| 4 | ramtlecl.t | . . . . . 6 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} | |
| 5 | 3, 4 | elrab2 3650 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
| 6 | 5 | simplbi 497 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → 𝑀 ∈ ℕ0) |
| 7 | eluznn0 12812 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) | |
| 8 | 7 | ex 412 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℕ0)) |
| 9 | 8 | ssrdv 3940 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ ℕ0) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ ℕ0) |
| 11 | 5 | simprbi 496 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)) |
| 12 | eluzle 12742 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑛) | |
| 13 | 12 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑛) |
| 14 | nn0ssre 12382 | . . . . . . . . . . . 12 ⊢ ℕ0 ⊆ ℝ | |
| 15 | ressxr 11153 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℝ* | |
| 16 | 14, 15 | sstri 3944 | . . . . . . . . . . 11 ⊢ ℕ0 ⊆ ℝ* |
| 17 | 6 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) |
| 18 | 16, 17 | sselid 3932 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ*) |
| 19 | 6, 7 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) |
| 20 | 16, 19 | sselid 3932 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℝ*) |
| 21 | vex 3440 | . . . . . . . . . . 11 ⊢ 𝑠 ∈ V | |
| 22 | hashxrcl 14261 | . . . . . . . . . . 11 ⊢ (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*) | |
| 23 | 21, 22 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (♯‘𝑠) ∈ ℝ*) |
| 24 | xrletr 13054 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) | |
| 25 | 18, 20, 23, 24 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) |
| 26 | 13, 25 | mpand 695 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠))) |
| 27 | 26 | imim1d 82 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑))) |
| 28 | 27 | ralrimdva 3132 | . . . . . 6 ⊢ (𝑀 ∈ 𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
| 29 | 28 | alimdv 1917 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
| 30 | 11, 29 | mpd 15 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
| 31 | ralcom4 3258 | . . . 4 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) | |
| 32 | 30, 31 | sylibr 234 | . . 3 ⊢ (𝑀 ∈ 𝑇 → ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
| 33 | ssrab 4023 | . . 3 ⊢ ((ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ≥‘𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))) | |
| 34 | 10, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}) |
| 35 | 34, 4 | sseqtrrdi 3976 | 1 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 ℝcr 11002 ℝ*cxr 11142 ≤ cle 11144 ℕ0cn0 12378 ℤ≥cuz 12729 ♯chash 14234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-hash 14235 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |