Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ramtlecl | Structured version Visualization version GIF version |
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
ramtlecl.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} |
Ref | Expression |
---|---|
ramtlecl | ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . . . . . 8 ⊢ (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠))) | |
2 | 1 | imbi1d 342 | . . . . . . 7 ⊢ (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑))) |
3 | 2 | albidv 1923 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
4 | ramtlecl.t | . . . . . 6 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} | |
5 | 3, 4 | elrab2 3627 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
6 | 5 | simplbi 498 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → 𝑀 ∈ ℕ0) |
7 | eluznn0 12657 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) | |
8 | 7 | ex 413 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℕ0)) |
9 | 8 | ssrdv 3927 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ ℕ0) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ ℕ0) |
11 | 5 | simprbi 497 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)) |
12 | eluzle 12595 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑛) | |
13 | 12 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑛) |
14 | nn0ssre 12237 | . . . . . . . . . . . 12 ⊢ ℕ0 ⊆ ℝ | |
15 | ressxr 11019 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℝ* | |
16 | 14, 15 | sstri 3930 | . . . . . . . . . . 11 ⊢ ℕ0 ⊆ ℝ* |
17 | 6 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) |
18 | 16, 17 | sselid 3919 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ*) |
19 | 6, 7 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) |
20 | 16, 19 | sselid 3919 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℝ*) |
21 | vex 3436 | . . . . . . . . . . 11 ⊢ 𝑠 ∈ V | |
22 | hashxrcl 14072 | . . . . . . . . . . 11 ⊢ (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*) | |
23 | 21, 22 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (♯‘𝑠) ∈ ℝ*) |
24 | xrletr 12892 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) | |
25 | 18, 20, 23, 24 | syl3anc 1370 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) |
26 | 13, 25 | mpand 692 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠))) |
27 | 26 | imim1d 82 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑))) |
28 | 27 | ralrimdva 3106 | . . . . . 6 ⊢ (𝑀 ∈ 𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
29 | 28 | alimdv 1919 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
30 | 11, 29 | mpd 15 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
31 | ralcom4 3164 | . . . 4 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) | |
32 | 30, 31 | sylibr 233 | . . 3 ⊢ (𝑀 ∈ 𝑇 → ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
33 | ssrab 4006 | . . 3 ⊢ ((ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ≥‘𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))) | |
34 | 10, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}) |
35 | 34, 4 | sseqtrrdi 3972 | 1 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 ℝcr 10870 ℝ*cxr 11008 ≤ cle 11010 ℕ0cn0 12233 ℤ≥cuz 12582 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-hash 14045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |