![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramtlecl | Structured version Visualization version GIF version |
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
ramtlecl.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} |
Ref | Expression |
---|---|
ramtlecl | ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5144 | . . . . . . . 8 ⊢ (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠))) | |
2 | 1 | imbi1d 341 | . . . . . . 7 ⊢ (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑))) |
3 | 2 | albidv 1915 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
4 | ramtlecl.t | . . . . . 6 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} | |
5 | 3, 4 | elrab2 3681 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
6 | 5 | simplbi 497 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → 𝑀 ∈ ℕ0) |
7 | eluznn0 12905 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) | |
8 | 7 | ex 412 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℕ0)) |
9 | 8 | ssrdv 3983 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ ℕ0) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ ℕ0) |
11 | 5 | simprbi 496 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)) |
12 | eluzle 12839 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑛) | |
13 | 12 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑛) |
14 | nn0ssre 12480 | . . . . . . . . . . . 12 ⊢ ℕ0 ⊆ ℝ | |
15 | ressxr 11262 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℝ* | |
16 | 14, 15 | sstri 3986 | . . . . . . . . . . 11 ⊢ ℕ0 ⊆ ℝ* |
17 | 6 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) |
18 | 16, 17 | sselid 3975 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ*) |
19 | 6, 7 | sylan 579 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) |
20 | 16, 19 | sselid 3975 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℝ*) |
21 | vex 3472 | . . . . . . . . . . 11 ⊢ 𝑠 ∈ V | |
22 | hashxrcl 14322 | . . . . . . . . . . 11 ⊢ (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*) | |
23 | 21, 22 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (♯‘𝑠) ∈ ℝ*) |
24 | xrletr 13143 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) | |
25 | 18, 20, 23, 24 | syl3anc 1368 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) |
26 | 13, 25 | mpand 692 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠))) |
27 | 26 | imim1d 82 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑))) |
28 | 27 | ralrimdva 3148 | . . . . . 6 ⊢ (𝑀 ∈ 𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
29 | 28 | alimdv 1911 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
30 | 11, 29 | mpd 15 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
31 | ralcom4 3277 | . . . 4 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) | |
32 | 30, 31 | sylibr 233 | . . 3 ⊢ (𝑀 ∈ 𝑇 → ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
33 | ssrab 4065 | . . 3 ⊢ ((ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ≥‘𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))) | |
34 | 10, 32, 33 | sylanbrc 582 | . 2 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}) |
35 | 34, 4 | sseqtrrdi 4028 | 1 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3055 {crab 3426 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 ‘cfv 6537 ℝcr 11111 ℝ*cxr 11251 ≤ cle 11253 ℕ0cn0 12476 ℤ≥cuz 12826 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-hash 14296 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |