MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtlecl Structured version   Visualization version   GIF version

Theorem ramtlecl 17033
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
ramtlecl.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}
Assertion
Ref Expression
ramtlecl (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Distinct variable groups:   𝑛,𝑠,𝑀   𝜑,𝑛   𝑇,𝑛,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem ramtlecl
StepHypRef Expression
1 breq1 5150 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠)))
21imbi1d 341 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑)))
32albidv 1917 . . . . . 6 (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)))
4 ramtlecl.t . . . . . 6 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}
53, 4elrab2 3697 . . . . 5 (𝑀𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)))
65simplbi 497 . . . 4 (𝑀𝑇𝑀 ∈ ℕ0)
7 eluznn0 12956 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
87ex 412 . . . . 5 (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℕ0))
98ssrdv 4000 . . . 4 (𝑀 ∈ ℕ0 → (ℤ𝑀) ⊆ ℕ0)
106, 9syl 17 . . 3 (𝑀𝑇 → (ℤ𝑀) ⊆ ℕ0)
115simprbi 496 . . . . 5 (𝑀𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))
12 eluzle 12888 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑀𝑛)
1312adantl 481 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀𝑛)
14 nn0ssre 12527 . . . . . . . . . . . 12 0 ⊆ ℝ
15 ressxr 11302 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
1614, 15sstri 4004 . . . . . . . . . . 11 0 ⊆ ℝ*
176adantr 480 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1816, 17sselid 3992 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ*)
196, 7sylan 580 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
2016, 19sselid 3992 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℝ*)
21 vex 3481 . . . . . . . . . . 11 𝑠 ∈ V
22 hashxrcl 14392 . . . . . . . . . . 11 (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*)
2321, 22mp1i 13 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (♯‘𝑠) ∈ ℝ*)
24 xrletr 13196 . . . . . . . . . 10 ((𝑀 ∈ ℝ*𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀𝑛𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠)))
2518, 20, 23, 24syl3anc 1370 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀𝑛𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠)))
2613, 25mpand 695 . . . . . . . 8 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠)))
2726imim1d 82 . . . . . . 7 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑)))
2827ralrimdva 3151 . . . . . 6 (𝑀𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)))
2928alimdv 1913 . . . . 5 (𝑀𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)))
3011, 29mpd 15 . . . 4 (𝑀𝑇 → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))
31 ralcom4 3283 . . . 4 (∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))
3230, 31sylibr 234 . . 3 (𝑀𝑇 → ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))
33 ssrab 4082 . . 3 ((ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)))
3410, 32, 33sylanbrc 583 . 2 (𝑀𝑇 → (ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)})
3534, 4sseqtrrdi 4046 1 (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1534   = wceq 1536  wcel 2105  wral 3058  {crab 3432  Vcvv 3477  wss 3962   class class class wbr 5147  cfv 6562  cr 11151  *cxr 11291  cle 11293  0cn0 12523  cuz 12875  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-hash 14366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator