![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramtlecl | Structured version Visualization version GIF version |
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
ramtlecl.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} |
Ref | Expression |
---|---|
ramtlecl | ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4928 | . . . . . . . 8 ⊢ (𝑛 = 𝑀 → (𝑛 ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠))) | |
2 | 1 | imbi1d 334 | . . . . . . 7 ⊢ (𝑛 = 𝑀 → ((𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ (𝑀 ≤ (♯‘𝑠) → 𝜑))) |
3 | 2 | albidv 1879 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
4 | ramtlecl.t | . . . . . 6 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} | |
5 | 3, 4 | elrab2 3593 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑))) |
6 | 5 | simplbi 490 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → 𝑀 ∈ ℕ0) |
7 | eluznn0 12129 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) | |
8 | 7 | ex 405 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℕ0)) |
9 | 8 | ssrdv 3858 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ ℕ0) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ ℕ0) |
11 | 5 | simprbi 489 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑)) |
12 | eluzle 12069 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑛) | |
13 | 12 | adantl 474 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑛) |
14 | nn0ssre 11709 | . . . . . . . . . . . 12 ⊢ ℕ0 ⊆ ℝ | |
15 | ressxr 10482 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℝ* | |
16 | 14, 15 | sstri 3861 | . . . . . . . . . . 11 ⊢ ℕ0 ⊆ ℝ* |
17 | 6 | adantr 473 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) |
18 | 16, 17 | sseldi 3850 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ*) |
19 | 6, 7 | sylan 572 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ0) |
20 | 16, 19 | sseldi 3850 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℝ*) |
21 | vex 3412 | . . . . . . . . . . 11 ⊢ 𝑠 ∈ V | |
22 | hashxrcl 13531 | . . . . . . . . . . 11 ⊢ (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*) | |
23 | 21, 22 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (♯‘𝑠) ∈ ℝ*) |
24 | xrletr 12366 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ (♯‘𝑠) ∈ ℝ*) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) | |
25 | 18, 20, 23, 24 | syl3anc 1351 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ (♯‘𝑠)) → 𝑀 ≤ (♯‘𝑠))) |
26 | 13, 25 | mpand 682 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 ≤ (♯‘𝑠) → 𝑀 ≤ (♯‘𝑠))) |
27 | 26 | imim1d 82 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑇 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → (𝑛 ≤ (♯‘𝑠) → 𝜑))) |
28 | 27 | ralrimdva 3133 | . . . . . 6 ⊢ (𝑀 ∈ 𝑇 → ((𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
29 | 28 | alimdv 1875 | . . . . 5 ⊢ (𝑀 ∈ 𝑇 → (∀𝑠(𝑀 ≤ (♯‘𝑠) → 𝜑) → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑))) |
30 | 11, 29 | mpd 15 | . . . 4 ⊢ (𝑀 ∈ 𝑇 → ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
31 | ralcom4 3176 | . . . 4 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑) ↔ ∀𝑠∀𝑛 ∈ (ℤ≥‘𝑀)(𝑛 ≤ (♯‘𝑠) → 𝜑)) | |
32 | 30, 31 | sylibr 226 | . . 3 ⊢ (𝑀 ∈ 𝑇 → ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)) |
33 | ssrab 3933 | . . 3 ⊢ ((ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ↔ ((ℤ≥‘𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ≥‘𝑀)∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑))) | |
34 | 10, 32, 33 | sylanbrc 575 | . 2 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)}) |
35 | 34, 4 | syl6sseqr 3902 | 1 ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∀wal 1505 = wceq 1507 ∈ wcel 2050 ∀wral 3082 {crab 3086 Vcvv 3409 ⊆ wss 3823 class class class wbr 4925 ‘cfv 6185 ℝcr 10332 ℝ*cxr 10471 ≤ cle 10473 ℕ0cn0 11705 ℤ≥cuz 12056 ♯chash 13503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-xnn0 11778 df-z 11792 df-uz 12057 df-hash 13504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |