MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramval Structured version   Visualization version   GIF version

Theorem ramval 16979
Description: The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramval.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
Assertion
Ref Expression
ramval ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
Distinct variable groups:   𝑓,𝑐,𝑥,𝐶   𝑛,𝑐,𝑠,𝐹,𝑓,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,𝑥   𝑉,𝑐,𝑓,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑖,𝑛,𝑠,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑇(𝑥,𝑓,𝑖,𝑛,𝑠,𝑎,𝑏,𝑐)   𝐹(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramval
Dummy variables 𝑦 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ram 16972 . . 3 Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ))
21a1i 11 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < )))
3 simplrr 777 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑟 = 𝐹)
43dmeqd 5869 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = dom 𝐹)
5 simpll3 1215 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝐹:𝑅⟶ℕ0)
65fdmd 6698 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = 𝑅)
74, 6eqtrd 2764 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = 𝑅)
8 simplrl 776 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑚 = 𝑀)
98eqeq2d 2740 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((♯‘𝑦) = 𝑚 ↔ (♯‘𝑦) = 𝑀))
109rabbidv 3413 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀})
11 vex 3451 . . . . . . . . . . . 12 𝑠 ∈ V
12 simpll1 1213 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℕ0)
13 ramval.c . . . . . . . . . . . . 13 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
1413hashbcval 16973 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀})
1511, 12, 14sylancr 587 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀})
1610, 15eqtr4d 2767 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = (𝑠𝐶𝑀))
177, 16oveq12d 7405 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚}) = (𝑅m (𝑠𝐶𝑀)))
1817raleqdv 3299 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))))
19 simpr 484 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑟 = 𝐹) → 𝑟 = 𝐹)
2019dmeqd 5869 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑟 = 𝐹) → dom 𝑟 = dom 𝐹)
21 fdm 6697 . . . . . . . . . . . . 13 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
22213ad2ant3 1135 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
2320, 22sylan9eqr 2786 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → dom 𝑟 = 𝑅)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) → dom 𝑟 = 𝑅)
253ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑟 = 𝐹)
2625fveq1d 6860 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑟𝑐) = (𝐹𝑐))
2726breq1d 5117 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑟𝑐) ≤ (♯‘𝑥) ↔ (𝐹𝑐) ≤ (♯‘𝑥)))
288ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 = 𝑀)
2928oveq2d 7403 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = (𝑥𝐶𝑀))
30 vex 3451 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3112ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑀 ∈ ℕ0)
3228, 31eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 ∈ ℕ0)
3313hashbcval 16973 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ 𝑚 ∈ ℕ0) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})
3430, 32, 33sylancr 587 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})
3529, 34eqtr3d 2766 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})
3635sseq1d 3978 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐})))
37 rabss 4035 . . . . . . . . . . . . . 14 ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})))
3835eleq2d 2814 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ 𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}))
39 rabid 3427 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚))
4038, 39bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)))
4140biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑥𝐶𝑀))
42 elpwi 4570 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
4342adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑥𝑠)
4413hashbcss 16975 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ V ∧ 𝑥𝑠𝑀 ∈ ℕ0) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀))
4511, 43, 31, 44mp3an2i 1468 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀))
4645sselda 3946 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ (𝑥𝐶𝑀)) → 𝑦 ∈ (𝑠𝐶𝑀))
4741, 46syldan 591 . . . . . . . . . . . . . . . . . 18 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑠𝐶𝑀))
48 elmapi 8822 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝑅m (𝑠𝐶𝑀)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅)
4948ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅)
50 ffn 6688 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝑠𝐶𝑀)⟶𝑅𝑓 Fn (𝑠𝐶𝑀))
51 fniniseg 7032 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn (𝑠𝐶𝑀) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
5249, 50, 513syl 18 . . . . . . . . . . . . . . . . . 18 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
5347, 52mpbirand 707 . . . . . . . . . . . . . . . . 17 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑓𝑦) = 𝑐))
5453anassrs 467 . . . . . . . . . . . . . . . 16 ((((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) ∧ (♯‘𝑦) = 𝑚) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑓𝑦) = 𝑐))
5554pm5.74da 803 . . . . . . . . . . . . . . 15 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) → (((♯‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})) ↔ ((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5655ralbidva 3154 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5737, 56bitrid 283 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5836, 57bitr2d 280 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐) ↔ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
5927, 58anbi12d 632 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6059rexbidva 3155 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) → (∃𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6124, 60rexeqbidv 3320 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) → (∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6261ralbidva 3154 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6318, 62bitrd 279 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6463imbi2d 340 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))) ↔ (𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
6564albidv 1920 . . . . 5 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))) ↔ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
6665rabbidva 3412 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))})
67 ramval.t . . . 4 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
6866, 67eqtr4di 2782 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))} = 𝑇)
6968infeq1d 9429 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ) = inf(𝑇, ℝ*, < ))
70 simp1 1136 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑀 ∈ ℕ0)
71 simp3 1138 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝐹:𝑅⟶ℕ0)
72 simp2 1137 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑅𝑉)
7371, 72fexd 7201 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝐹 ∈ V)
74 xrltso 13101 . . . 4 < Or ℝ*
7574infex 9446 . . 3 inf(𝑇, ℝ*, < ) ∈ V
7675a1i 11 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → inf(𝑇, ℝ*, < ) ∈ V)
772, 69, 70, 73, 76ovmpod 7541 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  ccnv 5637  dom cdm 5638  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  infcinf 9392  *cxr 11207   < clt 11208  cle 11209  0cn0 12442  chash 14295   Ramsey cram 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-ram 16972
This theorem is referenced by:  ramcl2lem  16980
  Copyright terms: Public domain W3C validator