MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramval Structured version   Visualization version   GIF version

Theorem ramval 17028
Description: The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramval.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
Assertion
Ref Expression
ramval ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
Distinct variable groups:   𝑓,𝑐,𝑥,𝐶   𝑛,𝑐,𝑠,𝐹,𝑓,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,𝑥   𝑉,𝑐,𝑓,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑖,𝑛,𝑠,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑇(𝑥,𝑓,𝑖,𝑛,𝑠,𝑎,𝑏,𝑐)   𝐹(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramval
Dummy variables 𝑦 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ram 17021 . . 3 Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ))
21a1i 11 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < )))
3 simplrr 777 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑟 = 𝐹)
43dmeqd 5885 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = dom 𝐹)
5 simpll3 1215 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝐹:𝑅⟶ℕ0)
65fdmd 6716 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = 𝑅)
74, 6eqtrd 2770 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = 𝑅)
8 simplrl 776 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑚 = 𝑀)
98eqeq2d 2746 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((♯‘𝑦) = 𝑚 ↔ (♯‘𝑦) = 𝑀))
109rabbidv 3423 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀})
11 vex 3463 . . . . . . . . . . . 12 𝑠 ∈ V
12 simpll1 1213 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℕ0)
13 ramval.c . . . . . . . . . . . . 13 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
1413hashbcval 17022 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀})
1511, 12, 14sylancr 587 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀})
1610, 15eqtr4d 2773 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = (𝑠𝐶𝑀))
177, 16oveq12d 7423 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚}) = (𝑅m (𝑠𝐶𝑀)))
1817raleqdv 3305 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))))
19 simpr 484 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑟 = 𝐹) → 𝑟 = 𝐹)
2019dmeqd 5885 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑟 = 𝐹) → dom 𝑟 = dom 𝐹)
21 fdm 6715 . . . . . . . . . . . . 13 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
22213ad2ant3 1135 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
2320, 22sylan9eqr 2792 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → dom 𝑟 = 𝑅)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) → dom 𝑟 = 𝑅)
253ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑟 = 𝐹)
2625fveq1d 6878 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑟𝑐) = (𝐹𝑐))
2726breq1d 5129 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑟𝑐) ≤ (♯‘𝑥) ↔ (𝐹𝑐) ≤ (♯‘𝑥)))
288ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 = 𝑀)
2928oveq2d 7421 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = (𝑥𝐶𝑀))
30 vex 3463 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3112ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑀 ∈ ℕ0)
3228, 31eqeltrd 2834 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 ∈ ℕ0)
3313hashbcval 17022 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ 𝑚 ∈ ℕ0) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})
3430, 32, 33sylancr 587 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})
3529, 34eqtr3d 2772 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})
3635sseq1d 3990 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐})))
37 rabss 4047 . . . . . . . . . . . . . 14 ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})))
3835eleq2d 2820 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ 𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}))
39 rabid 3437 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚))
4038, 39bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)))
4140biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑥𝐶𝑀))
42 elpwi 4582 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
4342adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑥𝑠)
4413hashbcss 17024 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ V ∧ 𝑥𝑠𝑀 ∈ ℕ0) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀))
4511, 43, 31, 44mp3an2i 1468 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀))
4645sselda 3958 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ (𝑥𝐶𝑀)) → 𝑦 ∈ (𝑠𝐶𝑀))
4741, 46syldan 591 . . . . . . . . . . . . . . . . . 18 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑠𝐶𝑀))
48 elmapi 8863 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝑅m (𝑠𝐶𝑀)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅)
4948ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅)
50 ffn 6706 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝑠𝐶𝑀)⟶𝑅𝑓 Fn (𝑠𝐶𝑀))
51 fniniseg 7050 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn (𝑠𝐶𝑀) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
5249, 50, 513syl 18 . . . . . . . . . . . . . . . . . 18 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
5347, 52mpbirand 707 . . . . . . . . . . . . . . . . 17 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑓𝑦) = 𝑐))
5453anassrs 467 . . . . . . . . . . . . . . . 16 ((((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) ∧ (♯‘𝑦) = 𝑚) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑓𝑦) = 𝑐))
5554pm5.74da 803 . . . . . . . . . . . . . . 15 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) → (((♯‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})) ↔ ((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5655ralbidva 3161 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5737, 56bitrid 283 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5836, 57bitr2d 280 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐) ↔ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
5927, 58anbi12d 632 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6059rexbidva 3162 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) → (∃𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6124, 60rexeqbidv 3326 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅m (𝑠𝐶𝑀))) → (∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6261ralbidva 3161 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6318, 62bitrd 279 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6463imbi2d 340 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))) ↔ (𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
6564albidv 1920 . . . . 5 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))) ↔ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
6665rabbidva 3422 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))})
67 ramval.t . . . 4 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
6866, 67eqtr4di 2788 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))} = 𝑇)
6968infeq1d 9490 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ) = inf(𝑇, ℝ*, < ))
70 simp1 1136 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑀 ∈ ℕ0)
71 simp3 1138 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝐹:𝑅⟶ℕ0)
72 simp2 1137 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑅𝑉)
7371, 72fexd 7219 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝐹 ∈ V)
74 xrltso 13157 . . . 4 < Or ℝ*
7574infex 9507 . . 3 inf(𝑇, ℝ*, < ) ∈ V
7675a1i 11 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → inf(𝑇, ℝ*, < ) ∈ V)
772, 69, 70, 73, 76ovmpod 7559 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  ccnv 5653  dom cdm 5654  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  infcinf 9453  *cxr 11268   < clt 11269  cle 11270  0cn0 12501  chash 14348   Ramsey cram 17019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-ram 17021
This theorem is referenced by:  ramcl2lem  17029
  Copyright terms: Public domain W3C validator