| Step | Hyp | Ref
| Expression |
| 1 | | df-ram 17021 |
. . 3
⊢ Ramsey =
(𝑚 ∈
ℕ0, 𝑟
∈ V ↦ inf({𝑛
∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |
| 2 | 1 | a1i 11 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → Ramsey =
(𝑚 ∈
ℕ0, 𝑟
∈ V ↦ inf({𝑛
∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
))) |
| 3 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑟 = 𝐹) |
| 4 | 3 | dmeqd 5885 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = dom 𝐹) |
| 5 | | simpll3 1215 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝐹:𝑅⟶ℕ0) |
| 6 | 5 | fdmd 6716 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = 𝑅) |
| 7 | 4, 6 | eqtrd 2770 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = 𝑅) |
| 8 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑚 = 𝑀) |
| 9 | 8 | eqeq2d 2746 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
((♯‘𝑦) = 𝑚 ↔ (♯‘𝑦) = 𝑀)) |
| 10 | 9 | rabbidv 3423 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀}) |
| 11 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑠 ∈ V |
| 12 | | simpll1 1213 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈
ℕ0) |
| 13 | | ramval.c |
. . . . . . . . . . . . 13
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| 14 | 13 | hashbcval 17022 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0)
→ (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀}) |
| 15 | 11, 12, 14 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀}) |
| 16 | 10, 15 | eqtr4d 2773 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = (𝑠𝐶𝑀)) |
| 17 | 7, 16 | oveq12d 7423 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚}) = (𝑅 ↑m (𝑠𝐶𝑀))) |
| 18 | 17 | raleqdv 3305 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑓 ∈ (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))) |
| 19 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑟 = 𝐹) → 𝑟 = 𝐹) |
| 20 | 19 | dmeqd 5885 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑟 = 𝐹) → dom 𝑟 = dom 𝐹) |
| 21 | | fdm 6715 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅) |
| 22 | 21 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → dom
𝐹 = 𝑅) |
| 23 | 20, 22 | sylan9eqr 2792 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → dom 𝑟 = 𝑅) |
| 24 | 23 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) → dom 𝑟 = 𝑅) |
| 25 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑟 = 𝐹) |
| 26 | 25 | fveq1d 6878 |
. . . . . . . . . . . . 13
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑟‘𝑐) = (𝐹‘𝑐)) |
| 27 | 26 | breq1d 5129 |
. . . . . . . . . . . 12
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑟‘𝑐) ≤ (♯‘𝑥) ↔ (𝐹‘𝑐) ≤ (♯‘𝑥))) |
| 28 | 8 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 = 𝑀) |
| 29 | 28 | oveq2d 7421 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = (𝑥𝐶𝑀)) |
| 30 | | vex 3463 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
| 31 | 12 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑀 ∈
ℕ0) |
| 32 | 28, 31 | eqeltrd 2834 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 ∈ ℕ0) |
| 33 | 13 | hashbcval 17022 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ V ∧ 𝑚 ∈ ℕ0)
→ (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}) |
| 34 | 30, 32, 33 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}) |
| 35 | 29, 34 | eqtr3d 2772 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}) |
| 36 | 35 | sseq1d 3990 |
. . . . . . . . . . . . 13
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}) ↔ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (◡𝑓 “ {𝑐}))) |
| 37 | | rabss 4047 |
. . . . . . . . . . . . . 14
⊢ ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (◡𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → 𝑦 ∈ (◡𝑓 “ {𝑐}))) |
| 38 | 35 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ 𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})) |
| 39 | | rabid 3437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) |
| 40 | 38, 39 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚))) |
| 41 | 40 | biimpar 477 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑥𝐶𝑀)) |
| 42 | | elpwi 4582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝒫 𝑠 → 𝑥 ⊆ 𝑠) |
| 43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑥 ⊆ 𝑠) |
| 44 | 13 | hashbcss 17024 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 ∈ V ∧ 𝑥 ⊆ 𝑠 ∧ 𝑀 ∈ ℕ0) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀)) |
| 45 | 11, 43, 31, 44 | mp3an2i 1468 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀)) |
| 46 | 45 | sselda 3958 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ (𝑥𝐶𝑀)) → 𝑦 ∈ (𝑠𝐶𝑀)) |
| 47 | 41, 46 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑠𝐶𝑀)) |
| 48 | | elmapi 8863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅) |
| 49 | 48 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅) |
| 50 | | ffn 6706 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:(𝑠𝐶𝑀)⟶𝑅 → 𝑓 Fn (𝑠𝐶𝑀)) |
| 51 | | fniniseg 7050 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 Fn (𝑠𝐶𝑀) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓‘𝑦) = 𝑐))) |
| 52 | 49, 50, 51 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓‘𝑦) = 𝑐))) |
| 53 | 47, 52 | mpbirand 707 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑓‘𝑦) = 𝑐)) |
| 54 | 53 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) ∧ (♯‘𝑦) = 𝑚) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑓‘𝑦) = 𝑐)) |
| 55 | 54 | pm5.74da 803 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) → (((♯‘𝑦) = 𝑚 → 𝑦 ∈ (◡𝑓 “ {𝑐})) ↔ ((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
| 56 | 55 | ralbidva 3161 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → 𝑦 ∈ (◡𝑓 “ {𝑐})) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
| 57 | 37, 56 | bitrid 283 |
. . . . . . . . . . . . 13
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (◡𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
| 58 | 36, 57 | bitr2d 280 |
. . . . . . . . . . . 12
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐) ↔ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
| 59 | 27, 58 | anbi12d 632 |
. . . . . . . . . . 11
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 60 | 59 | rexbidva 3162 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) → (∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 61 | 24, 60 | rexeqbidv 3326 |
. . . . . . . . 9
⊢
(((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) → (∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 62 | 61 | ralbidva 3161 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 63 | 18, 62 | bitrd 279 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑓 ∈ (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 64 | 63 | imbi2d 340 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) ↔ (𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
| 65 | 64 | albidv 1920 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) ↔ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
| 66 | 65 | rabbidva 3422 |
. . . 4
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))} = {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))}) |
| 67 | | ramval.t |
. . . 4
⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
| 68 | 66, 67 | eqtr4di 2788 |
. . 3
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))} = 𝑇) |
| 69 | 68 | infeq1d 9490 |
. 2
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → inf({𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, < ) = inf(𝑇, ℝ*, <
)) |
| 70 | | simp1 1136 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑀 ∈
ℕ0) |
| 71 | | simp3 1138 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅⟶ℕ0) |
| 72 | | simp2 1137 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ 𝑉) |
| 73 | 71, 72 | fexd 7219 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝐹 ∈ V) |
| 74 | | xrltso 13157 |
. . . 4
⊢ < Or
ℝ* |
| 75 | 74 | infex 9507 |
. . 3
⊢ inf(𝑇, ℝ*, < )
∈ V |
| 76 | 75 | a1i 11 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) →
inf(𝑇, ℝ*,
< ) ∈ V) |
| 77 | 2, 69, 70, 73, 76 | ovmpod 7559 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, <
)) |