Step | Hyp | Ref
| Expression |
1 | | df-ram 16683 |
. . 3
⊢ Ramsey =
(𝑚 ∈
ℕ0, 𝑟
∈ V ↦ inf({𝑛
∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → Ramsey =
(𝑚 ∈
ℕ0, 𝑟
∈ V ↦ inf({𝑛
∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
))) |
3 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑟 = 𝐹) |
4 | 3 | dmeqd 5811 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = dom 𝐹) |
5 | | simpll3 1212 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝐹:𝑅⟶ℕ0) |
6 | 5 | fdmd 6607 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = 𝑅) |
7 | 4, 6 | eqtrd 2779 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = 𝑅) |
8 | | simplrl 773 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑚 = 𝑀) |
9 | 8 | eqeq2d 2750 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
((♯‘𝑦) = 𝑚 ↔ (♯‘𝑦) = 𝑀)) |
10 | 9 | rabbidv 3412 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀}) |
11 | | vex 3434 |
. . . . . . . . . . . 12
⊢ 𝑠 ∈ V |
12 | | simpll1 1210 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈
ℕ0) |
13 | | ramval.c |
. . . . . . . . . . . . 13
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
14 | 13 | hashbcval 16684 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0)
→ (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀}) |
15 | 11, 12, 14 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑀}) |
16 | 10, 15 | eqtr4d 2782 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚} = (𝑠𝐶𝑀)) |
17 | 7, 16 | oveq12d 7286 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚}) = (𝑅 ↑m (𝑠𝐶𝑀))) |
18 | 17 | raleqdv 3346 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑓 ∈ (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))) |
19 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑟 = 𝐹) → 𝑟 = 𝐹) |
20 | 19 | dmeqd 5811 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑟 = 𝐹) → dom 𝑟 = dom 𝐹) |
21 | | fdm 6605 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅) |
22 | 21 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → dom
𝐹 = 𝑅) |
23 | 20, 22 | sylan9eqr 2801 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → dom 𝑟 = 𝑅) |
24 | 23 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) → dom 𝑟 = 𝑅) |
25 | 3 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑟 = 𝐹) |
26 | 25 | fveq1d 6770 |
. . . . . . . . . . . . 13
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑟‘𝑐) = (𝐹‘𝑐)) |
27 | 26 | breq1d 5088 |
. . . . . . . . . . . 12
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑟‘𝑐) ≤ (♯‘𝑥) ↔ (𝐹‘𝑐) ≤ (♯‘𝑥))) |
28 | 8 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 = 𝑀) |
29 | 28 | oveq2d 7284 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = (𝑥𝐶𝑀)) |
30 | | vex 3434 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
31 | 12 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑀 ∈
ℕ0) |
32 | 28, 31 | eqeltrd 2840 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 ∈ ℕ0) |
33 | 13 | hashbcval 16684 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ V ∧ 𝑚 ∈ ℕ0)
→ (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}) |
34 | 30, 32, 33 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}) |
35 | 29, 34 | eqtr3d 2781 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) = {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚}) |
36 | 35 | sseq1d 3956 |
. . . . . . . . . . . . 13
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}) ↔ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (◡𝑓 “ {𝑐}))) |
37 | | rabss 4009 |
. . . . . . . . . . . . . 14
⊢ ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (◡𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → 𝑦 ∈ (◡𝑓 “ {𝑐}))) |
38 | 35 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ 𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚})) |
39 | | rabid 3308 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) |
40 | 38, 39 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚))) |
41 | 40 | biimpar 477 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑥𝐶𝑀)) |
42 | | elpwi 4547 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝒫 𝑠 → 𝑥 ⊆ 𝑠) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑥 ⊆ 𝑠) |
44 | 13 | hashbcss 16686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 ∈ V ∧ 𝑥 ⊆ 𝑠 ∧ 𝑀 ∈ ℕ0) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀)) |
45 | 11, 43, 31, 44 | mp3an2i 1464 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀)) |
46 | 45 | sselda 3925 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ (𝑥𝐶𝑀)) → 𝑦 ∈ (𝑠𝐶𝑀)) |
47 | 41, 46 | syldan 590 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑠𝐶𝑀)) |
48 | | elmapi 8611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅) |
49 | 48 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅) |
50 | | ffn 6596 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:(𝑠𝐶𝑀)⟶𝑅 → 𝑓 Fn (𝑠𝐶𝑀)) |
51 | | fniniseg 6931 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 Fn (𝑠𝐶𝑀) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓‘𝑦) = 𝑐))) |
52 | 49, 50, 51 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓‘𝑦) = 𝑐))) |
53 | 47, 52 | mpbirand 703 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (♯‘𝑦) = 𝑚)) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑓‘𝑦) = 𝑐)) |
54 | 53 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) ∧ (♯‘𝑦) = 𝑚) → (𝑦 ∈ (◡𝑓 “ {𝑐}) ↔ (𝑓‘𝑦) = 𝑐)) |
55 | 54 | pm5.74da 800 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) → (((♯‘𝑦) = 𝑚 → 𝑦 ∈ (◡𝑓 “ {𝑐})) ↔ ((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
56 | 55 | ralbidva 3121 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → 𝑦 ∈ (◡𝑓 “ {𝑐})) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
57 | 37, 56 | syl5bb 282 |
. . . . . . . . . . . . 13
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ({𝑦 ∈ 𝒫 𝑥 ∣ (♯‘𝑦) = 𝑚} ⊆ (◡𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) |
58 | 36, 57 | bitr2d 279 |
. . . . . . . . . . . 12
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐) ↔ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
59 | 27, 58 | anbi12d 630 |
. . . . . . . . . . 11
⊢
((((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
60 | 59 | rexbidva 3226 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) → (∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
61 | 24, 60 | rexeqbidv 3335 |
. . . . . . . . 9
⊢
(((((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))) → (∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
62 | 61 | ralbidva 3121 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
63 | 18, 62 | bitrd 278 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑓 ∈ (dom
𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
64 | 63 | imbi2d 340 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) ↔ (𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
65 | 64 | albidv 1926 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐))) ↔ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
66 | 65 | rabbidva 3410 |
. . . 4
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))} = {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))}) |
67 | | ramval.t |
. . . 4
⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
68 | 66, 67 | eqtr4di 2797 |
. . 3
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))} = 𝑇) |
69 | 68 | infeq1d 9197 |
. 2
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑟 = 𝐹)) → inf({𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, < ) = inf(𝑇, ℝ*, <
)) |
70 | | simp1 1134 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑀 ∈
ℕ0) |
71 | | simp3 1136 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅⟶ℕ0) |
72 | | simp2 1135 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ 𝑉) |
73 | 71, 72 | fexd 7097 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝐹 ∈ V) |
74 | | xrltso 12857 |
. . . 4
⊢ < Or
ℝ* |
75 | 74 | infex 9213 |
. . 3
⊢ inf(𝑇, ℝ*, < )
∈ V |
76 | 75 | a1i 11 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) →
inf(𝑇, ℝ*,
< ) ∈ V) |
77 | 2, 69, 70, 73, 76 | ovmpod 7416 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, <
)) |