Detailed syntax breakdown of Definition df-ray
Step | Hyp | Ref
| Expression |
1 | | cray 34364 |
. 2
class
Ray |
2 | | vp |
. . . . . . . 8
setvar 𝑝 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑝 |
4 | | vn |
. . . . . . . . 9
setvar 𝑛 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑛 |
6 | | cee 27159 |
. . . . . . . 8
class
𝔼 |
7 | 5, 6 | cfv 6418 |
. . . . . . 7
class
(𝔼‘𝑛) |
8 | 3, 7 | wcel 2108 |
. . . . . 6
wff 𝑝 ∈ (𝔼‘𝑛) |
9 | | va |
. . . . . . . 8
setvar 𝑎 |
10 | 9 | cv 1538 |
. . . . . . 7
class 𝑎 |
11 | 10, 7 | wcel 2108 |
. . . . . 6
wff 𝑎 ∈ (𝔼‘𝑛) |
12 | 3, 10 | wne 2942 |
. . . . . 6
wff 𝑝 ≠ 𝑎 |
13 | 8, 11, 12 | w3a 1085 |
. . . . 5
wff (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) |
14 | | vr |
. . . . . . 7
setvar 𝑟 |
15 | 14 | cv 1538 |
. . . . . 6
class 𝑟 |
16 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
17 | 16 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
18 | 10, 17 | cop 4564 |
. . . . . . . 8
class
〈𝑎, 𝑥〉 |
19 | | coutsideof 34348 |
. . . . . . . 8
class
OutsideOf |
20 | 3, 18, 19 | wbr 5070 |
. . . . . . 7
wff 𝑝OutsideOf〈𝑎, 𝑥〉 |
21 | 20, 16, 7 | crab 3067 |
. . . . . 6
class {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉} |
22 | 15, 21 | wceq 1539 |
. . . . 5
wff 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉} |
23 | 13, 22 | wa 395 |
. . . 4
wff ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉}) |
24 | | cn 11903 |
. . . 4
class
ℕ |
25 | 23, 4, 24 | wrex 3064 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑝 ∈
(𝔼‘𝑛) ∧
𝑎 ∈
(𝔼‘𝑛) ∧
𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉}) |
26 | 25, 2, 9, 14 | coprab 7256 |
. 2
class
{〈〈𝑝,
𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} |
27 | 1, 26 | wceq 1539 |
1
wff Ray =
{〈〈𝑝, 𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} |