Detailed syntax breakdown of Definition df-ray
| Step | Hyp | Ref
| Expression |
| 1 | | cray 36136 |
. 2
class
Ray |
| 2 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 4 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 6 | | cee 28903 |
. . . . . . . 8
class
𝔼 |
| 7 | 5, 6 | cfv 6561 |
. . . . . . 7
class
(𝔼‘𝑛) |
| 8 | 3, 7 | wcel 2108 |
. . . . . 6
wff 𝑝 ∈ (𝔼‘𝑛) |
| 9 | | va |
. . . . . . . 8
setvar 𝑎 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 11 | 10, 7 | wcel 2108 |
. . . . . 6
wff 𝑎 ∈ (𝔼‘𝑛) |
| 12 | 3, 10 | wne 2940 |
. . . . . 6
wff 𝑝 ≠ 𝑎 |
| 13 | 8, 11, 12 | w3a 1087 |
. . . . 5
wff (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) |
| 14 | | vr |
. . . . . . 7
setvar 𝑟 |
| 15 | 14 | cv 1539 |
. . . . . 6
class 𝑟 |
| 16 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 17 | 16 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 18 | 10, 17 | cop 4632 |
. . . . . . . 8
class
〈𝑎, 𝑥〉 |
| 19 | | coutsideof 36120 |
. . . . . . . 8
class
OutsideOf |
| 20 | 3, 18, 19 | wbr 5143 |
. . . . . . 7
wff 𝑝OutsideOf〈𝑎, 𝑥〉 |
| 21 | 20, 16, 7 | crab 3436 |
. . . . . 6
class {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉} |
| 22 | 15, 21 | wceq 1540 |
. . . . 5
wff 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉} |
| 23 | 13, 22 | wa 395 |
. . . 4
wff ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉}) |
| 24 | | cn 12266 |
. . . 4
class
ℕ |
| 25 | 23, 4, 24 | wrex 3070 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑝 ∈
(𝔼‘𝑛) ∧
𝑎 ∈
(𝔼‘𝑛) ∧
𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉}) |
| 26 | 25, 2, 9, 14 | coprab 7432 |
. 2
class
{〈〈𝑝,
𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} |
| 27 | 1, 26 | wceq 1540 |
1
wff Ray =
{〈〈𝑝, 𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} |