Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funray Structured version   Visualization version   GIF version

Theorem funray 33504
Description: Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funray Fun Ray

Proof of Theorem funray
Dummy variables 𝑚 𝑎 𝑛 𝑝 𝑟 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3373 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2 simp1 1130 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑛))
3 simp1 1130 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑚))
4 axdimuniq 26632 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
5 fveq2 6669 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
6 rabeq 3489 . . . . . . . . . . . . . . . . . . 19 ((𝔼‘𝑛) = (𝔼‘𝑚) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
87eqeq2d 2837 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
98anbi1d 629 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ (𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
10 eqtr3 2848 . . . . . . . . . . . . . . . 16 ((𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)
119, 10syl6bi 254 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
124, 11syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1312an4s 656 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1413ex 413 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)))
1514com3l 89 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
162, 3, 15syl2an 595 . . . . . . . . . 10 (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
1716imp 407 . . . . . . . . 9 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) ∧ (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1817an4s 656 . . . . . . . 8 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1918com12 32 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
2019rexlimivv 3297 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
211, 20sylbir 236 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
2221gen2 1790 . . . 4 𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
23 eqeq1 2830 . . . . . . . 8 (𝑟 = 𝑠 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
2423anbi2d 628 . . . . . . 7 (𝑟 = 𝑠 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2524rexbidv 3302 . . . . . 6 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
265eleq2d 2903 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑝 ∈ (𝔼‘𝑚)))
275eleq2d 2903 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
2826, 273anbi12d 1430 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)))
297eqeq2d 2837 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3028, 29anbi12d 630 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3130cbvrexv 3459 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3225, 31syl6bb 288 . . . . 5 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3332mo4 2648 . . . 4 (∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∀𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
3422, 33mpbir 232 . . 3 ∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
3534funoprab 7268 . 2 Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
36 df-ray 33502 . . 3 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
3736funeqi 6375 . 2 (Fun Ray ↔ Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
3835, 37mpbir 232 1 Fun Ray
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081  wal 1528   = wceq 1530  wcel 2107  ∃*wmo 2618  wne 3021  wrex 3144  {crab 3147  cop 4570   class class class wbr 5063  Fun wfun 6348  cfv 6354  {coprab 7151  cn 11632  𝔼cee 26607  OutsideOfcoutsideof 33483  Raycray 33499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-z 11976  df-uz 12238  df-fz 12888  df-ee 26610  df-ray 33502
This theorem is referenced by:  fvray  33505
  Copyright terms: Public domain W3C validator