Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funray Structured version   Visualization version   GIF version

Theorem funray 34080
Description: Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funray Fun Ray

Proof of Theorem funray
Dummy variables 𝑚 𝑎 𝑛 𝑝 𝑟 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3270 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2 simp1 1137 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑛))
3 simp1 1137 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑚))
4 axdimuniq 26859 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
5 fveq2 6674 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
6 rabeq 3385 . . . . . . . . . . . . . . . . . . 19 ((𝔼‘𝑛) = (𝔼‘𝑚) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
87eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
98anbi1d 633 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ (𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
10 eqtr3 2760 . . . . . . . . . . . . . . . 16 ((𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)
119, 10syl6bi 256 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
124, 11syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1312an4s 660 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1413ex 416 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)))
1514com3l 89 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
162, 3, 15syl2an 599 . . . . . . . . . 10 (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
1716imp 410 . . . . . . . . 9 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) ∧ (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1817an4s 660 . . . . . . . 8 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1918com12 32 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
2019rexlimivv 3202 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
211, 20sylbir 238 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
2221gen2 1803 . . . 4 𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
23 eqeq1 2742 . . . . . . . 8 (𝑟 = 𝑠 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
2423anbi2d 632 . . . . . . 7 (𝑟 = 𝑠 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2524rexbidv 3207 . . . . . 6 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
265eleq2d 2818 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑝 ∈ (𝔼‘𝑚)))
275eleq2d 2818 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
2826, 273anbi12d 1438 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)))
297eqeq2d 2749 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3028, 29anbi12d 634 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3130cbvrexvw 3350 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3225, 31bitrdi 290 . . . . 5 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3332mo4 2566 . . . 4 (∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∀𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
3422, 33mpbir 234 . . 3 ∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
3534funoprab 7288 . 2 Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
36 df-ray 34078 . . 3 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
3736funeqi 6360 . 2 (Fun Ray ↔ Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
3835, 37mpbir 234 1 Fun Ray
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wal 1540   = wceq 1542  wcel 2114  ∃*wmo 2538  wne 2934  wrex 3054  {crab 3057  cop 4522   class class class wbr 5030  Fun wfun 6333  cfv 6339  {coprab 7171  cn 11716  𝔼cee 26834  OutsideOfcoutsideof 34059  Raycray 34075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-z 12063  df-uz 12325  df-fz 12982  df-ee 26837  df-ray 34078
This theorem is referenced by:  fvray  34081
  Copyright terms: Public domain W3C validator