Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funray Structured version   Visualization version   GIF version

Theorem funray 35107
Description: Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funray Fun Ray

Proof of Theorem funray
Dummy variables π‘š π‘Ž 𝑛 𝑝 π‘Ÿ 𝑠 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3226 . . . . . 6 (βˆƒπ‘› ∈ β„• βˆƒπ‘š ∈ β„• (((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) ↔ (βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ βˆƒπ‘š ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
2 simp1 1136 . . . . . . . . . . 11 ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) β†’ 𝑝 ∈ (π”Όβ€˜π‘›))
3 simp1 1136 . . . . . . . . . . 11 ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) β†’ 𝑝 ∈ (π”Όβ€˜π‘š))
4 axdimuniq 28168 . . . . . . . . . . . . . . 15 (((𝑛 ∈ β„• ∧ 𝑝 ∈ (π”Όβ€˜π‘›)) ∧ (π‘š ∈ β„• ∧ 𝑝 ∈ (π”Όβ€˜π‘š))) β†’ 𝑛 = π‘š)
5 fveq2 6891 . . . . . . . . . . . . . . . . . . 19 (𝑛 = π‘š β†’ (π”Όβ€˜π‘›) = (π”Όβ€˜π‘š))
6 rabeq 3446 . . . . . . . . . . . . . . . . . . 19 ((π”Όβ€˜π‘›) = (π”Όβ€˜π‘š) β†’ {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = π‘š β†’ {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})
87eqeq2d 2743 . . . . . . . . . . . . . . . . 17 (𝑛 = π‘š β†’ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ↔ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}))
98anbi1d 630 . . . . . . . . . . . . . . . 16 (𝑛 = π‘š β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
10 eqtr3 2758 . . . . . . . . . . . . . . . 16 ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ π‘Ÿ = 𝑠)
119, 10syl6bi 252 . . . . . . . . . . . . . . 15 (𝑛 = π‘š β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ π‘Ÿ = 𝑠))
124, 11syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ β„• ∧ 𝑝 ∈ (π”Όβ€˜π‘›)) ∧ (π‘š ∈ β„• ∧ 𝑝 ∈ (π”Όβ€˜π‘š))) β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ π‘Ÿ = 𝑠))
1312an4s 658 . . . . . . . . . . . . 13 (((𝑛 ∈ β„• ∧ π‘š ∈ β„•) ∧ (𝑝 ∈ (π”Όβ€˜π‘›) ∧ 𝑝 ∈ (π”Όβ€˜π‘š))) β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ π‘Ÿ = 𝑠))
1413ex 413 . . . . . . . . . . . 12 ((𝑛 ∈ β„• ∧ π‘š ∈ β„•) β†’ ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ 𝑝 ∈ (π”Όβ€˜π‘š)) β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ π‘Ÿ = 𝑠)))
1514com3l 89 . . . . . . . . . . 11 ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ 𝑝 ∈ (π”Όβ€˜π‘š)) β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ ((𝑛 ∈ β„• ∧ π‘š ∈ β„•) β†’ π‘Ÿ = 𝑠)))
162, 3, 15syl2an 596 . . . . . . . . . 10 (((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ (𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž)) β†’ ((π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) β†’ ((𝑛 ∈ β„• ∧ π‘š ∈ β„•) β†’ π‘Ÿ = 𝑠)))
1716imp 407 . . . . . . . . 9 ((((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ (𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž)) ∧ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ ((𝑛 ∈ β„• ∧ π‘š ∈ β„•) β†’ π‘Ÿ = 𝑠))
1817an4s 658 . . . . . . . 8 ((((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ ((𝑛 ∈ β„• ∧ π‘š ∈ β„•) β†’ π‘Ÿ = 𝑠))
1918com12 32 . . . . . . 7 ((𝑛 ∈ β„• ∧ π‘š ∈ β„•) β†’ ((((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ π‘Ÿ = 𝑠))
2019rexlimivv 3199 . . . . . 6 (βˆƒπ‘› ∈ β„• βˆƒπ‘š ∈ β„• (((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ π‘Ÿ = 𝑠)
211, 20sylbir 234 . . . . 5 ((βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ βˆƒπ‘š ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ π‘Ÿ = 𝑠)
2221gen2 1798 . . . 4 βˆ€π‘Ÿβˆ€π‘ ((βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ βˆƒπ‘š ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ π‘Ÿ = 𝑠)
23 eqeq1 2736 . . . . . . . 8 (π‘Ÿ = 𝑠 β†’ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ↔ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}))
2423anbi2d 629 . . . . . . 7 (π‘Ÿ = 𝑠 β†’ (((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
2524rexbidv 3178 . . . . . 6 (π‘Ÿ = 𝑠 β†’ (βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
265eleq2d 2819 . . . . . . . . 9 (𝑛 = π‘š β†’ (𝑝 ∈ (π”Όβ€˜π‘›) ↔ 𝑝 ∈ (π”Όβ€˜π‘š)))
275eleq2d 2819 . . . . . . . . 9 (𝑛 = π‘š β†’ (π‘Ž ∈ (π”Όβ€˜π‘›) ↔ π‘Ž ∈ (π”Όβ€˜π‘š)))
2826, 273anbi12d 1437 . . . . . . . 8 (𝑛 = π‘š β†’ ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ↔ (𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž)))
297eqeq2d 2743 . . . . . . . 8 (𝑛 = π‘š β†’ (𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ↔ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}))
3028, 29anbi12d 631 . . . . . . 7 (𝑛 = π‘š β†’ (((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
3130cbvrexvw 3235 . . . . . 6 (βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ βˆƒπ‘š ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}))
3225, 31bitrdi 286 . . . . 5 (π‘Ÿ = 𝑠 β†’ (βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ βˆƒπ‘š ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
3332mo4 2560 . . . 4 (βˆƒ*π‘Ÿβˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ βˆ€π‘Ÿβˆ€π‘ ((βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ∧ βˆƒπ‘š ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘š) ∧ π‘Ž ∈ (π”Όβ€˜π‘š) ∧ 𝑝 β‰  π‘Ž) ∧ 𝑠 = {π‘₯ ∈ (π”Όβ€˜π‘š) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})) β†’ π‘Ÿ = 𝑠))
3422, 33mpbir 230 . . 3 βˆƒ*π‘Ÿβˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})
3534funoprab 7529 . 2 Fun {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})}
36 df-ray 35105 . . 3 Ray = {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})}
3736funeqi 6569 . 2 (Fun Ray ↔ Fun {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})})
3835, 37mpbir 230 1 Fun Ray
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  βˆƒ*wmo 2532   β‰  wne 2940  βˆƒwrex 3070  {crab 3432  βŸ¨cop 4634   class class class wbr 5148  Fun wfun 6537  β€˜cfv 6543  {coprab 7409  β„•cn 12211  π”Όcee 28143  OutsideOfcoutsideof 35086  Raycray 35102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-z 12558  df-uz 12822  df-fz 13484  df-ee 28146  df-ray 35105
This theorem is referenced by:  fvray  35108
  Copyright terms: Public domain W3C validator