Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funray Structured version   Visualization version   GIF version

Theorem funray 34451
Description: Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funray Fun Ray

Proof of Theorem funray
Dummy variables 𝑚 𝑎 𝑛 𝑝 𝑟 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3295 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2 simp1 1135 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑛))
3 simp1 1135 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑚))
4 axdimuniq 27290 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
5 fveq2 6783 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
6 rabeq 3419 . . . . . . . . . . . . . . . . . . 19 ((𝔼‘𝑛) = (𝔼‘𝑚) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
87eqeq2d 2750 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
98anbi1d 630 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ (𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
10 eqtr3 2765 . . . . . . . . . . . . . . . 16 ((𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)
119, 10syl6bi 252 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
124, 11syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1312an4s 657 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1413ex 413 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)))
1514com3l 89 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
162, 3, 15syl2an 596 . . . . . . . . . 10 (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
1716imp 407 . . . . . . . . 9 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) ∧ (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1817an4s 657 . . . . . . . 8 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1918com12 32 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
2019rexlimivv 3222 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
211, 20sylbir 234 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
2221gen2 1799 . . . 4 𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
23 eqeq1 2743 . . . . . . . 8 (𝑟 = 𝑠 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
2423anbi2d 629 . . . . . . 7 (𝑟 = 𝑠 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2524rexbidv 3227 . . . . . 6 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
265eleq2d 2825 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑝 ∈ (𝔼‘𝑚)))
275eleq2d 2825 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
2826, 273anbi12d 1436 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)))
297eqeq2d 2750 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3028, 29anbi12d 631 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3130cbvrexvw 3385 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3225, 31bitrdi 287 . . . . 5 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3332mo4 2567 . . . 4 (∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∀𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
3422, 33mpbir 230 . . 3 ∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
3534funoprab 7405 . 2 Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
36 df-ray 34449 . . 3 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
3736funeqi 6462 . 2 (Fun Ray ↔ Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
3835, 37mpbir 230 1 Fun Ray
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2107  ∃*wmo 2539  wne 2944  wrex 3066  {crab 3069  cop 4568   class class class wbr 5075  Fun wfun 6431  cfv 6437  {coprab 7285  cn 11982  𝔼cee 27265  OutsideOfcoutsideof 34430  Raycray 34446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-z 12329  df-uz 12592  df-fz 13249  df-ee 27268  df-ray 34449
This theorem is referenced by:  fvray  34452
  Copyright terms: Public domain W3C validator