Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funray Structured version   Visualization version   GIF version

Theorem funray 32568
Description: Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funray Fun Ray

Proof of Theorem funray
Dummy variables 𝑚 𝑎 𝑛 𝑝 𝑟 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3295 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2 simp1 1159 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑛))
3 simp1 1159 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) → 𝑝 ∈ (𝔼‘𝑚))
4 axdimuniq 26007 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
5 fveq2 6408 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
6 rabeq 3382 . . . . . . . . . . . . . . . . . . 19 ((𝔼‘𝑛) = (𝔼‘𝑚) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
87eqeq2d 2816 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
98anbi1d 617 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ (𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
10 eqtr3 2827 . . . . . . . . . . . . . . . 16 ((𝑟 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)
119, 10syl6bi 244 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
124, 11syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1312an4s 642 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚))) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠))
1413ex 399 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → 𝑟 = 𝑠)))
1514com3l 89 . . . . . . . . . . 11 ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑝 ∈ (𝔼‘𝑚)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
162, 3, 15syl2an 585 . . . . . . . . . 10 (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) → ((𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠)))
1716imp 395 . . . . . . . . 9 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)) ∧ (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1817an4s 642 . . . . . . . 8 ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑟 = 𝑠))
1918com12 32 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
2019rexlimivv 3224 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
211, 20sylbir 226 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
2221gen2 1878 . . . 4 𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠)
23 eqeq1 2810 . . . . . . . 8 (𝑟 = 𝑠 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
2423anbi2d 616 . . . . . . 7 (𝑟 = 𝑠 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
2524rexbidv 3240 . . . . . 6 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
265eleq2d 2871 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑝 ∈ (𝔼‘𝑚)))
275eleq2d 2871 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
2826, 273anbi12d 1554 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎)))
297eqeq2d 2816 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3028, 29anbi12d 618 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3130cbvrexv 3361 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}))
3225, 31syl6bb 278 . . . . 5 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})))
3332mo4 2680 . . . 4 (∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∀𝑟𝑠((∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑚) ∧ 𝑎 ∈ (𝔼‘𝑚) ∧ 𝑝𝑎) ∧ 𝑠 = {𝑥 ∈ (𝔼‘𝑚) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})) → 𝑟 = 𝑠))
3422, 33mpbir 222 . . 3 ∃*𝑟𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})
3534funoprab 6990 . 2 Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
36 df-ray 32566 . . 3 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
3736funeqi 6122 . 2 (Fun Ray ↔ Fun {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
3835, 37mpbir 222 1 Fun Ray
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100  wal 1635   = wceq 1637  wcel 2156  ∃*wmo 2631  wne 2978  wrex 3097  {crab 3100  cop 4376   class class class wbr 4844  Fun wfun 6095  cfv 6101  {coprab 6875  cn 11305  𝔼cee 25982  OutsideOfcoutsideof 32547  Raycray 32563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-z 11644  df-uz 11905  df-fz 12550  df-ee 25985  df-ray 32566
This theorem is referenced by:  fvray  32569
  Copyright terms: Public domain W3C validator