Detailed syntax breakdown of Definition df-line2
| Step | Hyp | Ref
| Expression |
| 1 | | cline2 36076 |
. 2
class
Line |
| 2 | | va |
. . . . . . . 8
setvar 𝑎 |
| 3 | 2 | cv 1538 |
. . . . . . 7
class 𝑎 |
| 4 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑛 |
| 6 | | cee 28852 |
. . . . . . . 8
class
𝔼 |
| 7 | 5, 6 | cfv 6542 |
. . . . . . 7
class
(𝔼‘𝑛) |
| 8 | 3, 7 | wcel 2107 |
. . . . . 6
wff 𝑎 ∈ (𝔼‘𝑛) |
| 9 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 10 | 9 | cv 1538 |
. . . . . . 7
class 𝑏 |
| 11 | 10, 7 | wcel 2107 |
. . . . . 6
wff 𝑏 ∈ (𝔼‘𝑛) |
| 12 | 3, 10 | wne 2931 |
. . . . . 6
wff 𝑎 ≠ 𝑏 |
| 13 | 8, 11, 12 | w3a 1086 |
. . . . 5
wff (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) |
| 14 | | vl |
. . . . . . 7
setvar 𝑙 |
| 15 | 14 | cv 1538 |
. . . . . 6
class 𝑙 |
| 16 | 3, 10 | cop 4614 |
. . . . . . 7
class
〈𝑎, 𝑏〉 |
| 17 | | ccolin 35979 |
. . . . . . . 8
class
Colinear |
| 18 | 17 | ccnv 5666 |
. . . . . . 7
class ◡ Colinear |
| 19 | 16, 18 | cec 8726 |
. . . . . 6
class
[〈𝑎, 𝑏〉]◡ Colinear |
| 20 | 15, 19 | wceq 1539 |
. . . . 5
wff 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear |
| 21 | 13, 20 | wa 395 |
. . . 4
wff ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) |
| 22 | | cn 12249 |
. . . 4
class
ℕ |
| 23 | 21, 4, 22 | wrex 3059 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) |
| 24 | 23, 2, 9, 14 | coprab 7415 |
. 2
class
{〈〈𝑎,
𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |
| 25 | 1, 24 | wceq 1539 |
1
wff Line =
{〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |