Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   GIF version

Theorem fvray 35807
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ (𝑃Ray𝐴) = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑁   π‘₯,𝑃

Proof of Theorem fvray
Dummy variables π‘Ž 𝑛 𝑝 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7420 . 2 (𝑃Ray𝐴) = (Rayβ€˜βŸ¨π‘ƒ, 𝐴⟩)
2 eqid 2725 . . . . 5 {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}
3 fveq2 6894 . . . . . . . . 9 (𝑛 = 𝑁 β†’ (π”Όβ€˜π‘›) = (π”Όβ€˜π‘))
43eleq2d 2811 . . . . . . . 8 (𝑛 = 𝑁 β†’ (𝑃 ∈ (π”Όβ€˜π‘›) ↔ 𝑃 ∈ (π”Όβ€˜π‘)))
53eleq2d 2811 . . . . . . . 8 (𝑛 = 𝑁 β†’ (𝐴 ∈ (π”Όβ€˜π‘›) ↔ 𝐴 ∈ (π”Όβ€˜π‘)))
64, 53anbi12d 1433 . . . . . . 7 (𝑛 = 𝑁 β†’ ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ↔ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)))
7 rabeq 3434 . . . . . . . . 9 ((π”Όβ€˜π‘›) = (π”Όβ€˜π‘) β†’ {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
83, 7syl 17 . . . . . . . 8 (𝑛 = 𝑁 β†’ {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
98eqeq2d 2736 . . . . . . 7 (𝑛 = 𝑁 β†’ ({π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} ↔ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}))
106, 9anbi12d 630 . . . . . 6 (𝑛 = 𝑁 β†’ (((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}) ↔ ((𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
1110rspcev 3607 . . . . 5 ((𝑁 ∈ β„• ∧ ((𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})) β†’ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}))
122, 11mpanr2 702 . . . 4 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}))
13 simpr1 1191 . . . . 5 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
14 simpr2 1192 . . . . 5 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
15 fvex 6907 . . . . . . 7 (π”Όβ€˜π‘) ∈ V
1615rabex 5334 . . . . . 6 {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} ∈ V
17 eleq1 2813 . . . . . . . . . 10 (𝑝 = 𝑃 β†’ (𝑝 ∈ (π”Όβ€˜π‘›) ↔ 𝑃 ∈ (π”Όβ€˜π‘›)))
18 neeq1 2993 . . . . . . . . . 10 (𝑝 = 𝑃 β†’ (𝑝 β‰  π‘Ž ↔ 𝑃 β‰  π‘Ž))
1917, 183anbi13d 1434 . . . . . . . . 9 (𝑝 = 𝑃 β†’ ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ↔ (𝑃 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  π‘Ž)))
20 breq1 5151 . . . . . . . . . . 11 (𝑝 = 𝑃 β†’ (𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩ ↔ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩))
2120rabbidv 3427 . . . . . . . . . 10 (𝑝 = 𝑃 β†’ {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩})
2221eqeq2d 2736 . . . . . . . . 9 (𝑝 = 𝑃 β†’ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩} ↔ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩}))
2319, 22anbi12d 630 . . . . . . . 8 (𝑝 = 𝑃 β†’ (((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
2423rexbidv 3169 . . . . . . 7 (𝑝 = 𝑃 β†’ (βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩})))
25 eleq1 2813 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ (π‘Ž ∈ (π”Όβ€˜π‘›) ↔ 𝐴 ∈ (π”Όβ€˜π‘›)))
26 neeq2 2994 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ (𝑃 β‰  π‘Ž ↔ 𝑃 β‰  𝐴))
2725, 263anbi23d 1435 . . . . . . . . 9 (π‘Ž = 𝐴 β†’ ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  π‘Ž) ↔ (𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴)))
28 opeq1 4874 . . . . . . . . . . . 12 (π‘Ž = 𝐴 β†’ βŸ¨π‘Ž, π‘₯⟩ = ⟨𝐴, π‘₯⟩)
2928breq2d 5160 . . . . . . . . . . 11 (π‘Ž = 𝐴 β†’ (𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩ ↔ 𝑃OutsideOf⟨𝐴, π‘₯⟩))
3029rabbidv 3427 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
3130eqeq2d 2736 . . . . . . . . 9 (π‘Ž = 𝐴 β†’ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩} ↔ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}))
3227, 31anbi12d 630 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (((𝑃 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
3332rexbidv 3169 . . . . . . 7 (π‘Ž = 𝐴 β†’ (βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOfβŸ¨π‘Ž, π‘₯⟩}) ↔ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
34 eqeq1 2729 . . . . . . . . 9 (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} β†’ (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} ↔ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}))
3534anbi2d 628 . . . . . . . 8 (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} β†’ (((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}) ↔ ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
3635rexbidv 3169 . . . . . . 7 (π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} β†’ (βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}) ↔ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
3724, 33, 36eloprabg 7528 . . . . . 6 ((𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} ∈ V) β†’ (βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})} ↔ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
3816, 37mp3an3 1446 . . . . 5 ((𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)) β†’ (βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})} ↔ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
3913, 14, 38syl2anc 582 . . . 4 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ (βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})} ↔ βˆƒπ‘› ∈ β„• ((𝑃 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑃 β‰  𝐴) ∧ {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})))
4012, 39mpbird 256 . . 3 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})})
41 df-br 5149 . . . . 5 (βŸ¨π‘ƒ, 𝐴⟩Ray{π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} ↔ βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ Ray)
42 df-ray 35804 . . . . . 6 Ray = {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})}
4342eleq2i 2817 . . . . 5 (βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ Ray ↔ βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})})
4441, 43bitri 274 . . . 4 (βŸ¨π‘ƒ, 𝐴⟩Ray{π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} ↔ βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})})
45 funray 35806 . . . . 5 Fun Ray
46 funbrfv 6945 . . . . 5 (Fun Ray β†’ (βŸ¨π‘ƒ, 𝐴⟩Ray{π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} β†’ (Rayβ€˜βŸ¨π‘ƒ, 𝐴⟩) = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}))
4745, 46ax-mp 5 . . . 4 (βŸ¨π‘ƒ, 𝐴⟩Ray{π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩} β†’ (Rayβ€˜βŸ¨π‘ƒ, 𝐴⟩) = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
4844, 47sylbir 234 . . 3 (βŸ¨βŸ¨π‘ƒ, 𝐴⟩, {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩}⟩ ∈ {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})} β†’ (Rayβ€˜βŸ¨π‘ƒ, 𝐴⟩) = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
4940, 48syl 17 . 2 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ (Rayβ€˜βŸ¨π‘ƒ, 𝐴⟩) = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
501, 49eqtrid 2777 1 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 β‰  𝐴)) β†’ (𝑃Ray𝐴) = {π‘₯ ∈ (π”Όβ€˜π‘) ∣ 𝑃OutsideOf⟨𝐴, π‘₯⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060  {crab 3419  Vcvv 3463  βŸ¨cop 4635   class class class wbr 5148  Fun wfun 6541  β€˜cfv 6547  (class class class)co 7417  {coprab 7418  β„•cn 12242  π”Όcee 28755  OutsideOfcoutsideof 35785  Raycray 35801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-z 12589  df-uz 12853  df-fz 13517  df-ee 28758  df-ray 35804
This theorem is referenced by:  lineunray  35813
  Copyright terms: Public domain W3C validator