Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   GIF version

Theorem fvray 32564
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃

Proof of Theorem fvray
Dummy variables 𝑎 𝑛 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6873 . 2 (𝑃Ray𝐴) = (Ray‘⟨𝑃, 𝐴⟩)
2 eqid 2806 . . . . 5 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}
3 fveq2 6404 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
43eleq2d 2871 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑁)))
53eleq2d 2871 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
64, 53anbi12d 1554 . . . . . . 7 (𝑛 = 𝑁 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)))
7 rabeq 3382 . . . . . . . . 9 ((𝔼‘𝑛) = (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
83, 7syl 17 . . . . . . . 8 (𝑛 = 𝑁 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
98eqeq2d 2816 . . . . . . 7 (𝑛 = 𝑁 → ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
106, 9anbi12d 618 . . . . . 6 (𝑛 = 𝑁 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
1110rspcev 3502 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
122, 11mpanr2 687 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
13 simpr1 1241 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝑃 ∈ (𝔼‘𝑁))
14 simpr2 1243 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝐴 ∈ (𝔼‘𝑁))
15 fvex 6417 . . . . . . 7 (𝔼‘𝑁) ∈ V
1615rabex 5007 . . . . . 6 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V
17 eleq1 2873 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑛)))
18 neeq1 3040 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑎𝑃𝑎))
1917, 183anbi13d 1555 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎)))
20 breq1 4847 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝑎, 𝑥⟩))
2120rabbidv 3379 . . . . . . . . . 10 (𝑝 = 𝑃 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})
2221eqeq2d 2816 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}))
2319, 22anbi12d 618 . . . . . . . 8 (𝑝 = 𝑃 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
2423rexbidv 3240 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
25 eleq1 2873 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
26 neeq2 3041 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑃𝑎𝑃𝐴))
2725, 263anbi23d 1556 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴)))
28 opeq1 4595 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝑥⟩ = ⟨𝐴, 𝑥⟩)
2928breq2d 4856 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑃OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝑥⟩))
3029rabbidv 3379 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
3130eqeq2d 2816 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3227, 31anbi12d 618 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3332rexbidv 3240 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
34 eqeq1 2810 . . . . . . . . 9 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3534anbi2d 616 . . . . . . . 8 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3635rexbidv 3240 . . . . . . 7 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3724, 33, 36eloprabg 6974 . . . . . 6 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3816, 37mp3an3 1567 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3913, 14, 38syl2anc 575 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
4012, 39mpbird 248 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
41 df-br 4845 . . . . 5 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray)
42 df-ray 32561 . . . . . 6 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
4342eleq2i 2877 . . . . 5 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
4441, 43bitri 266 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
45 funray 32563 . . . . 5 Fun Ray
46 funbrfv 6450 . . . . 5 (Fun Ray → (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
4745, 46ax-mp 5 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4844, 47sylbir 226 . . 3 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4940, 48syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
501, 49syl5eq 2852 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wrex 3097  {crab 3100  Vcvv 3391  cop 4376   class class class wbr 4844  Fun wfun 6091  cfv 6097  (class class class)co 6870  {coprab 6871  cn 11301  𝔼cee 25978  OutsideOfcoutsideof 32542  Raycray 32558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-z 11640  df-uz 11901  df-fz 12546  df-ee 25981  df-ray 32561
This theorem is referenced by:  lineunray  32570
  Copyright terms: Public domain W3C validator