Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   GIF version

Theorem fvray 34370
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃

Proof of Theorem fvray
Dummy variables 𝑎 𝑛 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7258 . 2 (𝑃Ray𝐴) = (Ray‘⟨𝑃, 𝐴⟩)
2 eqid 2738 . . . . 5 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}
3 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
43eleq2d 2824 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑁)))
53eleq2d 2824 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
64, 53anbi12d 1435 . . . . . . 7 (𝑛 = 𝑁 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)))
7 rabeq 3408 . . . . . . . . 9 ((𝔼‘𝑛) = (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
83, 7syl 17 . . . . . . . 8 (𝑛 = 𝑁 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
98eqeq2d 2749 . . . . . . 7 (𝑛 = 𝑁 → ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
106, 9anbi12d 630 . . . . . 6 (𝑛 = 𝑁 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
1110rspcev 3552 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
122, 11mpanr2 700 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
13 simpr1 1192 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝑃 ∈ (𝔼‘𝑁))
14 simpr2 1193 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝐴 ∈ (𝔼‘𝑁))
15 fvex 6769 . . . . . . 7 (𝔼‘𝑁) ∈ V
1615rabex 5251 . . . . . 6 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V
17 eleq1 2826 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑛)))
18 neeq1 3005 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑎𝑃𝑎))
1917, 183anbi13d 1436 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎)))
20 breq1 5073 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝑎, 𝑥⟩))
2120rabbidv 3404 . . . . . . . . . 10 (𝑝 = 𝑃 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})
2221eqeq2d 2749 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}))
2319, 22anbi12d 630 . . . . . . . 8 (𝑝 = 𝑃 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
2423rexbidv 3225 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
25 eleq1 2826 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
26 neeq2 3006 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑃𝑎𝑃𝐴))
2725, 263anbi23d 1437 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴)))
28 opeq1 4801 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝑥⟩ = ⟨𝐴, 𝑥⟩)
2928breq2d 5082 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑃OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝑥⟩))
3029rabbidv 3404 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
3130eqeq2d 2749 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3227, 31anbi12d 630 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3332rexbidv 3225 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
34 eqeq1 2742 . . . . . . . . 9 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3534anbi2d 628 . . . . . . . 8 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3635rexbidv 3225 . . . . . . 7 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3724, 33, 36eloprabg 7362 . . . . . 6 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3816, 37mp3an3 1448 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3913, 14, 38syl2anc 583 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
4012, 39mpbird 256 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
41 df-br 5071 . . . . 5 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray)
42 df-ray 34367 . . . . . 6 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
4342eleq2i 2830 . . . . 5 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
4441, 43bitri 274 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
45 funray 34369 . . . . 5 Fun Ray
46 funbrfv 6802 . . . . 5 (Fun Ray → (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
4745, 46ax-mp 5 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4844, 47sylbir 234 . . 3 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4940, 48syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
501, 49syl5eq 2791 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  cop 4564   class class class wbr 5070  Fun wfun 6412  cfv 6418  (class class class)co 7255  {coprab 7256  cn 11903  𝔼cee 27159  OutsideOfcoutsideof 34348  Raycray 34364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-z 12250  df-uz 12512  df-fz 13169  df-ee 27162  df-ray 34367
This theorem is referenced by:  lineunray  34376
  Copyright terms: Public domain W3C validator