Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   GIF version

Theorem fvray 36105
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃

Proof of Theorem fvray
Dummy variables 𝑎 𝑛 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7451 . 2 (𝑃Ray𝐴) = (Ray‘⟨𝑃, 𝐴⟩)
2 eqid 2740 . . . . 5 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}
3 fveq2 6920 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
43eleq2d 2830 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑁)))
53eleq2d 2830 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
64, 53anbi12d 1437 . . . . . . 7 (𝑛 = 𝑁 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)))
7 rabeq 3458 . . . . . . . . 9 ((𝔼‘𝑛) = (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
83, 7syl 17 . . . . . . . 8 (𝑛 = 𝑁 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
98eqeq2d 2751 . . . . . . 7 (𝑛 = 𝑁 → ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
106, 9anbi12d 631 . . . . . 6 (𝑛 = 𝑁 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
1110rspcev 3635 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
122, 11mpanr2 703 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
13 simpr1 1194 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝑃 ∈ (𝔼‘𝑁))
14 simpr2 1195 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝐴 ∈ (𝔼‘𝑁))
15 fvex 6933 . . . . . . 7 (𝔼‘𝑁) ∈ V
1615rabex 5357 . . . . . 6 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V
17 eleq1 2832 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑛)))
18 neeq1 3009 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑎𝑃𝑎))
1917, 183anbi13d 1438 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎)))
20 breq1 5169 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝑎, 𝑥⟩))
2120rabbidv 3451 . . . . . . . . . 10 (𝑝 = 𝑃 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})
2221eqeq2d 2751 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}))
2319, 22anbi12d 631 . . . . . . . 8 (𝑝 = 𝑃 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
2423rexbidv 3185 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
25 eleq1 2832 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
26 neeq2 3010 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑃𝑎𝑃𝐴))
2725, 263anbi23d 1439 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴)))
28 opeq1 4897 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝑥⟩ = ⟨𝐴, 𝑥⟩)
2928breq2d 5178 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑃OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝑥⟩))
3029rabbidv 3451 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
3130eqeq2d 2751 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3227, 31anbi12d 631 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3332rexbidv 3185 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
34 eqeq1 2744 . . . . . . . . 9 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3534anbi2d 629 . . . . . . . 8 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3635rexbidv 3185 . . . . . . 7 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3724, 33, 36eloprabg 7560 . . . . . 6 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3816, 37mp3an3 1450 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3913, 14, 38syl2anc 583 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
4012, 39mpbird 257 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
41 df-br 5167 . . . . 5 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray)
42 df-ray 36102 . . . . . 6 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
4342eleq2i 2836 . . . . 5 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
4441, 43bitri 275 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
45 funray 36104 . . . . 5 Fun Ray
46 funbrfv 6971 . . . . 5 (Fun Ray → (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
4745, 46ax-mp 5 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4844, 47sylbir 235 . . 3 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4940, 48syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
501, 49eqtrid 2792 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  cop 4654   class class class wbr 5166  Fun wfun 6567  cfv 6573  (class class class)co 7448  {coprab 7449  cn 12293  𝔼cee 28921  OutsideOfcoutsideof 36083  Raycray 36099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-z 12640  df-uz 12904  df-fz 13568  df-ee 28924  df-ray 36102
This theorem is referenced by:  lineunray  36111
  Copyright terms: Public domain W3C validator