Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   GIF version

Theorem fvray 36174
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃

Proof of Theorem fvray
Dummy variables 𝑎 𝑛 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7349 . 2 (𝑃Ray𝐴) = (Ray‘⟨𝑃, 𝐴⟩)
2 eqid 2731 . . . . 5 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}
3 fveq2 6822 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
43eleq2d 2817 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑁)))
53eleq2d 2817 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
64, 53anbi12d 1439 . . . . . . 7 (𝑛 = 𝑁 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)))
7 rabeq 3409 . . . . . . . . 9 ((𝔼‘𝑛) = (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
83, 7syl 17 . . . . . . . 8 (𝑛 = 𝑁 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
98eqeq2d 2742 . . . . . . 7 (𝑛 = 𝑁 → ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
106, 9anbi12d 632 . . . . . 6 (𝑛 = 𝑁 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
1110rspcev 3577 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
122, 11mpanr2 704 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
13 simpr1 1195 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝑃 ∈ (𝔼‘𝑁))
14 simpr2 1196 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝐴 ∈ (𝔼‘𝑁))
15 fvex 6835 . . . . . . 7 (𝔼‘𝑁) ∈ V
1615rabex 5277 . . . . . 6 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V
17 eleq1 2819 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑛)))
18 neeq1 2990 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑎𝑃𝑎))
1917, 183anbi13d 1440 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎)))
20 breq1 5094 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝑎, 𝑥⟩))
2120rabbidv 3402 . . . . . . . . . 10 (𝑝 = 𝑃 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})
2221eqeq2d 2742 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}))
2319, 22anbi12d 632 . . . . . . . 8 (𝑝 = 𝑃 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
2423rexbidv 3156 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
25 eleq1 2819 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
26 neeq2 2991 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑃𝑎𝑃𝐴))
2725, 263anbi23d 1441 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴)))
28 opeq1 4825 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝑥⟩ = ⟨𝐴, 𝑥⟩)
2928breq2d 5103 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑃OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝑥⟩))
3029rabbidv 3402 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
3130eqeq2d 2742 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3227, 31anbi12d 632 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3332rexbidv 3156 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
34 eqeq1 2735 . . . . . . . . 9 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3534anbi2d 630 . . . . . . . 8 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3635rexbidv 3156 . . . . . . 7 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3724, 33, 36eloprabg 7456 . . . . . 6 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3816, 37mp3an3 1452 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3913, 14, 38syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
4012, 39mpbird 257 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
41 df-br 5092 . . . . 5 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray)
42 df-ray 36171 . . . . . 6 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
4342eleq2i 2823 . . . . 5 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
4441, 43bitri 275 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
45 funray 36173 . . . . 5 Fun Ray
46 funbrfv 6870 . . . . 5 (Fun Ray → (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
4745, 46ax-mp 5 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4844, 47sylbir 235 . . 3 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4940, 48syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
501, 49eqtrid 2778 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  cop 4582   class class class wbr 5091  Fun wfun 6475  cfv 6481  (class class class)co 7346  {coprab 7347  cn 12122  𝔼cee 28864  OutsideOfcoutsideof 36152  Raycray 36168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-z 12466  df-uz 12730  df-fz 13405  df-ee 28867  df-ray 36171
This theorem is referenced by:  lineunray  36180
  Copyright terms: Public domain W3C validator