Step | Hyp | Ref
| Expression |
1 | | refrel 22567 |
. . . 4
⊢ Rel
Ref |
2 | 1 | brrelex2i 5635 |
. . 3
⊢ (𝐴Ref𝐵 → 𝐵 ∈ V) |
3 | 2 | anim2i 616 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴Ref𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
4 | | simpl 482 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) → 𝐴 ∈ 𝐶) |
5 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋) → 𝑌 = 𝑋) |
6 | | isref.2 |
. . . . . . 7
⊢ 𝑌 = ∪
𝐵 |
7 | | isref.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐴 |
8 | 5, 6, 7 | 3eqtr3g 2802 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋) → ∪ 𝐵 = ∪
𝐴) |
9 | | uniexg 7571 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ∪ 𝐴 ∈ V) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋) → ∪ 𝐴 ∈ V) |
11 | 8, 10 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋) → ∪ 𝐵 ∈ V) |
12 | | uniexb 7592 |
. . . . 5
⊢ (𝐵 ∈ V ↔ ∪ 𝐵
∈ V) |
13 | 11, 12 | sylibr 233 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋) → 𝐵 ∈ V) |
14 | 13 | adantrr 713 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) → 𝐵 ∈ V) |
15 | 4, 14 | jca 511 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
16 | | unieq 4847 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪
𝐴) |
17 | 16, 7 | eqtr4di 2797 |
. . . . 5
⊢ (𝑎 = 𝐴 → ∪ 𝑎 = 𝑋) |
18 | 17 | eqeq2d 2749 |
. . . 4
⊢ (𝑎 = 𝐴 → (∪ 𝑏 = ∪
𝑎 ↔ ∪ 𝑏 =
𝑋)) |
19 | | raleq 3333 |
. . . 4
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦)) |
20 | 18, 19 | anbi12d 630 |
. . 3
⊢ (𝑎 = 𝐴 → ((∪ 𝑏 = ∪
𝑎 ∧ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦) ↔ (∪ 𝑏 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦))) |
21 | | unieq 4847 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ∪ 𝑏 = ∪
𝐵) |
22 | 21, 6 | eqtr4di 2797 |
. . . . 5
⊢ (𝑏 = 𝐵 → ∪ 𝑏 = 𝑌) |
23 | 22 | eqeq1d 2740 |
. . . 4
⊢ (𝑏 = 𝐵 → (∪ 𝑏 = 𝑋 ↔ 𝑌 = 𝑋)) |
24 | | rexeq 3334 |
. . . . 5
⊢ (𝑏 = 𝐵 → (∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
25 | 24 | ralbidv 3120 |
. . . 4
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
26 | 23, 25 | anbi12d 630 |
. . 3
⊢ (𝑏 = 𝐵 → ((∪ 𝑏 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦) ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
27 | | df-ref 22564 |
. . 3
⊢ Ref =
{〈𝑎, 𝑏〉 ∣ (∪ 𝑏 =
∪ 𝑎 ∧ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦)} |
28 | 20, 26, 27 | brabg 5445 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
29 | 3, 15, 28 | pm5.21nd 798 |
1
⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |