MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isref Structured version   Visualization version   GIF version

Theorem isref 22568
Description: The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 34455. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
isref.1 𝑋 = 𝐴
isref.2 𝑌 = 𝐵
Assertion
Ref Expression
isref (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isref
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 22567 . . . 4 Rel Ref
21brrelex2i 5635 . . 3 (𝐴Ref𝐵𝐵 ∈ V)
32anim2i 616 . 2 ((𝐴𝐶𝐴Ref𝐵) → (𝐴𝐶𝐵 ∈ V))
4 simpl 482 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴𝐶)
5 simpr 484 . . . . . . 7 ((𝐴𝐶𝑌 = 𝑋) → 𝑌 = 𝑋)
6 isref.2 . . . . . . 7 𝑌 = 𝐵
7 isref.1 . . . . . . 7 𝑋 = 𝐴
85, 6, 73eqtr3g 2802 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 = 𝐴)
9 uniexg 7571 . . . . . . 7 (𝐴𝐶 𝐴 ∈ V)
109adantr 480 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐴 ∈ V)
118, 10eqeltrd 2839 . . . . 5 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
12 uniexb 7592 . . . . 5 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1311, 12sylibr 233 . . . 4 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
1413adantrr 713 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ∈ V)
154, 14jca 511 . 2 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → (𝐴𝐶𝐵 ∈ V))
16 unieq 4847 . . . . . 6 (𝑎 = 𝐴 𝑎 = 𝐴)
1716, 7eqtr4di 2797 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝑋)
1817eqeq2d 2749 . . . 4 (𝑎 = 𝐴 → ( 𝑏 = 𝑎 𝑏 = 𝑋))
19 raleq 3333 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥𝑦))
2018, 19anbi12d 630 . . 3 (𝑎 = 𝐴 → (( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦) ↔ ( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦)))
21 unieq 4847 . . . . . 6 (𝑏 = 𝐵 𝑏 = 𝐵)
2221, 6eqtr4di 2797 . . . . 5 (𝑏 = 𝐵 𝑏 = 𝑌)
2322eqeq1d 2740 . . . 4 (𝑏 = 𝐵 → ( 𝑏 = 𝑋𝑌 = 𝑋))
24 rexeq 3334 . . . . 5 (𝑏 = 𝐵 → (∃𝑦𝑏 𝑥𝑦 ↔ ∃𝑦𝐵 𝑥𝑦))
2524ralbidv 3120 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
2623, 25anbi12d 630 . . 3 (𝑏 = 𝐵 → (( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦) ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
27 df-ref 22564 . . 3 Ref = {⟨𝑎, 𝑏⟩ ∣ ( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦)}
2820, 26, 27brabg 5445 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
293, 15, 28pm5.21nd 798 1 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070  Refcref 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-ref 22564
This theorem is referenced by:  refbas  22569  refssex  22570  ssref  22571  refref  22572  reftr  22573  refun0  22574  dissnref  22587  reff  31691  locfinreflem  31692  cmpcref  31702  fnessref  34473  refssfne  34474
  Copyright terms: Public domain W3C validator