MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isref Structured version   Visualization version   GIF version

Theorem isref 23447
Description: The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 36357. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
isref.1 𝑋 = 𝐴
isref.2 𝑌 = 𝐵
Assertion
Ref Expression
isref (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isref
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 23446 . . . 4 Rel Ref
21brrelex2i 5711 . . 3 (𝐴Ref𝐵𝐵 ∈ V)
32anim2i 617 . 2 ((𝐴𝐶𝐴Ref𝐵) → (𝐴𝐶𝐵 ∈ V))
4 simpl 482 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴𝐶)
5 simpr 484 . . . . . . 7 ((𝐴𝐶𝑌 = 𝑋) → 𝑌 = 𝑋)
6 isref.2 . . . . . . 7 𝑌 = 𝐵
7 isref.1 . . . . . . 7 𝑋 = 𝐴
85, 6, 73eqtr3g 2793 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 = 𝐴)
9 uniexg 7734 . . . . . . 7 (𝐴𝐶 𝐴 ∈ V)
109adantr 480 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐴 ∈ V)
118, 10eqeltrd 2834 . . . . 5 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
12 uniexb 7758 . . . . 5 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1311, 12sylibr 234 . . . 4 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
1413adantrr 717 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ∈ V)
154, 14jca 511 . 2 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → (𝐴𝐶𝐵 ∈ V))
16 unieq 4894 . . . . . 6 (𝑎 = 𝐴 𝑎 = 𝐴)
1716, 7eqtr4di 2788 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝑋)
1817eqeq2d 2746 . . . 4 (𝑎 = 𝐴 → ( 𝑏 = 𝑎 𝑏 = 𝑋))
19 raleq 3302 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥𝑦))
2018, 19anbi12d 632 . . 3 (𝑎 = 𝐴 → (( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦) ↔ ( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦)))
21 unieq 4894 . . . . . 6 (𝑏 = 𝐵 𝑏 = 𝐵)
2221, 6eqtr4di 2788 . . . . 5 (𝑏 = 𝐵 𝑏 = 𝑌)
2322eqeq1d 2737 . . . 4 (𝑏 = 𝐵 → ( 𝑏 = 𝑋𝑌 = 𝑋))
24 rexeq 3301 . . . . 5 (𝑏 = 𝐵 → (∃𝑦𝑏 𝑥𝑦 ↔ ∃𝑦𝐵 𝑥𝑦))
2524ralbidv 3163 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
2623, 25anbi12d 632 . . 3 (𝑏 = 𝐵 → (( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦) ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
27 df-ref 23443 . . 3 Ref = {⟨𝑎, 𝑏⟩ ∣ ( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦)}
2820, 26, 27brabg 5514 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
293, 15, 28pm5.21nd 801 1 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926   cuni 4883   class class class wbr 5119  Refcref 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-ref 23443
This theorem is referenced by:  refbas  23448  refssex  23449  ssref  23450  refref  23451  reftr  23452  refun0  23453  dissnref  23466  reff  33870  locfinreflem  33871  cmpcref  33881  fnessref  36375  refssfne  36376
  Copyright terms: Public domain W3C validator