MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isref Structured version   Visualization version   GIF version

Theorem isref 23412
Description: The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 36312. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
isref.1 𝑋 = 𝐴
isref.2 𝑌 = 𝐵
Assertion
Ref Expression
isref (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isref
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 23411 . . . 4 Rel Ref
21brrelex2i 5680 . . 3 (𝐴Ref𝐵𝐵 ∈ V)
32anim2i 617 . 2 ((𝐴𝐶𝐴Ref𝐵) → (𝐴𝐶𝐵 ∈ V))
4 simpl 482 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴𝐶)
5 simpr 484 . . . . . . 7 ((𝐴𝐶𝑌 = 𝑋) → 𝑌 = 𝑋)
6 isref.2 . . . . . . 7 𝑌 = 𝐵
7 isref.1 . . . . . . 7 𝑋 = 𝐴
85, 6, 73eqtr3g 2787 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 = 𝐴)
9 uniexg 7680 . . . . . . 7 (𝐴𝐶 𝐴 ∈ V)
109adantr 480 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐴 ∈ V)
118, 10eqeltrd 2828 . . . . 5 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
12 uniexb 7704 . . . . 5 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1311, 12sylibr 234 . . . 4 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
1413adantrr 717 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ∈ V)
154, 14jca 511 . 2 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → (𝐴𝐶𝐵 ∈ V))
16 unieq 4872 . . . . . 6 (𝑎 = 𝐴 𝑎 = 𝐴)
1716, 7eqtr4di 2782 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝑋)
1817eqeq2d 2740 . . . 4 (𝑎 = 𝐴 → ( 𝑏 = 𝑎 𝑏 = 𝑋))
19 raleq 3287 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥𝑦))
2018, 19anbi12d 632 . . 3 (𝑎 = 𝐴 → (( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦) ↔ ( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦)))
21 unieq 4872 . . . . . 6 (𝑏 = 𝐵 𝑏 = 𝐵)
2221, 6eqtr4di 2782 . . . . 5 (𝑏 = 𝐵 𝑏 = 𝑌)
2322eqeq1d 2731 . . . 4 (𝑏 = 𝐵 → ( 𝑏 = 𝑋𝑌 = 𝑋))
24 rexeq 3286 . . . . 5 (𝑏 = 𝐵 → (∃𝑦𝑏 𝑥𝑦 ↔ ∃𝑦𝐵 𝑥𝑦))
2524ralbidv 3152 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
2623, 25anbi12d 632 . . 3 (𝑏 = 𝐵 → (( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦) ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
27 df-ref 23408 . . 3 Ref = {⟨𝑎, 𝑏⟩ ∣ ( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦)}
2820, 26, 27brabg 5486 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
293, 15, 28pm5.21nd 801 1 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905   cuni 4861   class class class wbr 5095  Refcref 23405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-ref 23408
This theorem is referenced by:  refbas  23413  refssex  23414  ssref  23415  refref  23416  reftr  23417  refun0  23418  dissnref  23431  reff  33805  locfinreflem  33806  cmpcref  33816  fnessref  36330  refssfne  36331
  Copyright terms: Public domain W3C validator