| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refrel | Structured version Visualization version GIF version | ||
| Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refrel | ⊢ Rel Ref |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ref 23421 | . 2 ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | |
| 2 | 1 | relopabiv 5764 | 1 ⊢ Rel Ref |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∪ cuni 4858 Rel wrel 5624 Refcref 23418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-ref 23421 |
| This theorem is referenced by: isref 23425 refbas 23426 refssex 23427 reftr 23430 refun0 23431 locfinref 33875 refssfne 36423 |
| Copyright terms: Public domain | W3C validator |