MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refrel Structured version   Visualization version   GIF version

Theorem refrel 22659
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
refrel Rel Ref

Proof of Theorem refrel
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ref 22656 . 2 Ref = {⟨𝑥, 𝑦⟩ ∣ ( 𝑦 = 𝑥 ∧ ∀𝑧𝑥𝑤𝑦 𝑧𝑤)}
21relopabiv 5730 1 Rel Ref
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wral 3064  wrex 3065  wss 3887   cuni 4839  Rel wrel 5594  Refcref 22653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137  df-xp 5595  df-rel 5596  df-ref 22656
This theorem is referenced by:  isref  22660  refbas  22661  refssex  22662  reftr  22665  refun0  22666  locfinref  31791  refssfne  34547
  Copyright terms: Public domain W3C validator