| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refrel | Structured version Visualization version GIF version | ||
| Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refrel | ⊢ Rel Ref |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ref 23399 | . 2 ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel Ref |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∪ cuni 4874 Rel wrel 5646 Refcref 23396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-ref 23399 |
| This theorem is referenced by: isref 23403 refbas 23404 refssex 23405 reftr 23408 refun0 23409 locfinref 33838 refssfne 36353 |
| Copyright terms: Public domain | W3C validator |