MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refrel Structured version   Visualization version   GIF version

Theorem refrel 23537
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
refrel Rel Ref

Proof of Theorem refrel
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ref 23534 . 2 Ref = {⟨𝑥, 𝑦⟩ ∣ ( 𝑦 = 𝑥 ∧ ∀𝑧𝑥𝑤𝑦 𝑧𝑤)}
21relopabiv 5844 1 Rel Ref
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wral 3067  wrex 3076  wss 3976   cuni 4931  Rel wrel 5705  Refcref 23531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707  df-ref 23534
This theorem is referenced by:  isref  23538  refbas  23539  refssex  23540  reftr  23543  refun0  23544  locfinref  33787  refssfne  36324
  Copyright terms: Public domain W3C validator