Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refrel | Structured version Visualization version GIF version |
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refrel | ⊢ Rel Ref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ref 22656 | . 2 ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel Ref |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∪ cuni 4839 Rel wrel 5594 Refcref 22653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-ref 22656 |
This theorem is referenced by: isref 22660 refbas 22661 refssex 22662 reftr 22665 refun0 22666 locfinref 31791 refssfne 34547 |
Copyright terms: Public domain | W3C validator |