![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refrel | Structured version Visualization version GIF version |
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refrel | ⊢ Rel Ref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ref 23453 | . 2 ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | |
2 | 1 | relopabiv 5822 | 1 ⊢ Rel Ref |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∀wral 3050 ∃wrex 3059 ⊆ wss 3944 ∪ cuni 4909 Rel wrel 5683 Refcref 23450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-ss 3961 df-opab 5212 df-xp 5684 df-rel 5685 df-ref 23453 |
This theorem is referenced by: isref 23457 refbas 23458 refssex 23459 reftr 23462 refun0 23463 locfinref 33570 refssfne 35970 |
Copyright terms: Public domain | W3C validator |