MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refrel Structured version   Visualization version   GIF version

Theorem refrel 23456
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
refrel Rel Ref

Proof of Theorem refrel
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ref 23453 . 2 Ref = {⟨𝑥, 𝑦⟩ ∣ ( 𝑦 = 𝑥 ∧ ∀𝑧𝑥𝑤𝑦 𝑧𝑤)}
21relopabiv 5822 1 Rel Ref
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wral 3050  wrex 3059  wss 3944   cuni 4909  Rel wrel 5683  Refcref 23450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-ss 3961  df-opab 5212  df-xp 5684  df-rel 5685  df-ref 23453
This theorem is referenced by:  isref  23457  refbas  23458  refssex  23459  reftr  23462  refun0  23463  locfinref  33570  refssfne  35970
  Copyright terms: Public domain W3C validator