Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refrel | Structured version Visualization version GIF version |
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refrel | ⊢ Rel Ref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ref 22564 | . 2 ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel Ref |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∪ cuni 4836 Rel wrel 5585 Refcref 22561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-ref 22564 |
This theorem is referenced by: isref 22568 refbas 22569 refssex 22570 reftr 22573 refun0 22574 locfinref 31693 refssfne 34474 |
Copyright terms: Public domain | W3C validator |