![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refrel | Structured version Visualization version GIF version |
Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refrel | ⊢ Rel Ref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ref 23534 | . 2 ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel Ref |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∪ cuni 4931 Rel wrel 5705 Refcref 23531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-ref 23534 |
This theorem is referenced by: isref 23538 refbas 23539 refssex 23540 reftr 23543 refun0 23544 locfinref 33787 refssfne 36324 |
Copyright terms: Public domain | W3C validator |