![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isreg | Structured version Visualization version GIF version |
Description: The predicate "is a regular space". In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
isreg | ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽)) | |
2 | 1 | fveq1d 6893 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → ((cls‘𝑗)‘𝑧) = ((cls‘𝐽)‘𝑧)) |
3 | 2 | sseq1d 4013 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (((cls‘𝑗)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)) |
4 | 3 | anbi2d 629 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
5 | 4 | rexeqbi1dv 3334 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
6 | 5 | ralbidv 3177 | . . 3 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
7 | 6 | raleqbi1dv 3333 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
8 | df-reg 22819 | . 2 ⊢ Reg = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} | |
9 | 7, 8 | elrab2 3686 | 1 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 ‘cfv 6543 Topctop 22394 clsccl 22521 Regcreg 22812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-reg 22819 |
This theorem is referenced by: regtop 22836 regsep 22837 isreg2 22880 kqreglem1 23244 kqreglem2 23245 nrmr0reg 23252 reghmph 23296 utopreg 23756 |
Copyright terms: Public domain | W3C validator |