MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg Structured version   Visualization version   GIF version

Theorem isreg 22706
Description: The predicate "is a regular space". In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐽

Proof of Theorem isreg
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . . . . . 8 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
21fveq1d 6848 . . . . . . 7 (𝑗 = 𝐽 → ((cls‘𝑗)‘𝑧) = ((cls‘𝐽)‘𝑧))
32sseq1d 3979 . . . . . 6 (𝑗 = 𝐽 → (((cls‘𝑗)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
43anbi2d 630 . . . . 5 (𝑗 = 𝐽 → ((𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
54rexeqbi1dv 3307 . . . 4 (𝑗 = 𝐽 → (∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
65ralbidv 3171 . . 3 (𝑗 = 𝐽 → (∀𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
76raleqbi1dv 3306 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
8 df-reg 22690 . 2 Reg = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
97, 8elrab2 3652 1 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070  wss 3914  cfv 6500  Topctop 22265  clsccl 22392  Regcreg 22683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508  df-reg 22690
This theorem is referenced by:  regtop  22707  regsep  22708  isreg2  22751  kqreglem1  23115  kqreglem2  23116  nrmr0reg  23123  reghmph  23167  utopreg  23627
  Copyright terms: Public domain W3C validator