MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg Structured version   Visualization version   GIF version

Theorem isreg 23195
Description: The predicate "is a regular space". In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐽

Proof of Theorem isreg
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . 8 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
21fveq1d 6842 . . . . . . 7 (𝑗 = 𝐽 → ((cls‘𝑗)‘𝑧) = ((cls‘𝐽)‘𝑧))
32sseq1d 3975 . . . . . 6 (𝑗 = 𝐽 → (((cls‘𝑗)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
43anbi2d 630 . . . . 5 (𝑗 = 𝐽 → ((𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
54rexeqbi1dv 3309 . . . 4 (𝑗 = 𝐽 → (∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
65ralbidv 3156 . . 3 (𝑗 = 𝐽 → (∀𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
76raleqbi1dv 3308 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
8 df-reg 23179 . 2 Reg = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
97, 8elrab2 3659 1 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911  cfv 6499  Topctop 22756  clsccl 22881  Regcreg 23172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-reg 23179
This theorem is referenced by:  regtop  23196  regsep  23197  isreg2  23240  kqreglem1  23604  kqreglem2  23605  nrmr0reg  23612  reghmph  23656  utopreg  24116
  Copyright terms: Public domain W3C validator