Detailed syntax breakdown of Definition df-relexp
| Step | Hyp | Ref
| Expression |
| 1 | | crelexp 15058 |
. 2
class
↑𝑟 |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vn |
. . 3
setvar 𝑛 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | cn0 12526 |
. . 3
class
ℕ0 |
| 6 | 3 | cv 1539 |
. . . . 5
class 𝑛 |
| 7 | | cc0 11155 |
. . . . 5
class
0 |
| 8 | 6, 7 | wceq 1540 |
. . . 4
wff 𝑛 = 0 |
| 9 | | cid 5577 |
. . . . 5
class
I |
| 10 | 2 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 11 | 10 | cdm 5685 |
. . . . . 6
class dom 𝑟 |
| 12 | 10 | crn 5686 |
. . . . . 6
class ran 𝑟 |
| 13 | 11, 12 | cun 3949 |
. . . . 5
class (dom
𝑟 ∪ ran 𝑟) |
| 14 | 9, 13 | cres 5687 |
. . . 4
class ( I
↾ (dom 𝑟 ∪ ran
𝑟)) |
| 15 | | vx |
. . . . . . 7
setvar 𝑥 |
| 16 | | vy |
. . . . . . 7
setvar 𝑦 |
| 17 | 15 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 18 | 17, 10 | ccom 5689 |
. . . . . . 7
class (𝑥 ∘ 𝑟) |
| 19 | 15, 16, 4, 4, 18 | cmpo 7433 |
. . . . . 6
class (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)) |
| 20 | | vz |
. . . . . . 7
setvar 𝑧 |
| 21 | 20, 4, 10 | cmpt 5225 |
. . . . . 6
class (𝑧 ∈ V ↦ 𝑟) |
| 22 | | c1 11156 |
. . . . . 6
class
1 |
| 23 | 19, 21, 22 | cseq 14042 |
. . . . 5
class
seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) |
| 24 | 6, 23 | cfv 6561 |
. . . 4
class
(seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) |
| 25 | 8, 14, 24 | cif 4525 |
. . 3
class if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
| 26 | 2, 3, 4, 5, 25 | cmpo 7433 |
. 2
class (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
| 27 | 1, 26 | wceq 1540 |
1
wff
↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |