Detailed syntax breakdown of Definition df-relexp
Step | Hyp | Ref
| Expression |
1 | | crelexp 14658 |
. 2
class
↑𝑟 |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | vn |
. . 3
setvar 𝑛 |
4 | | cvv 3422 |
. . 3
class
V |
5 | | cn0 12163 |
. . 3
class
ℕ0 |
6 | 3 | cv 1538 |
. . . . 5
class 𝑛 |
7 | | cc0 10802 |
. . . . 5
class
0 |
8 | 6, 7 | wceq 1539 |
. . . 4
wff 𝑛 = 0 |
9 | | cid 5479 |
. . . . 5
class
I |
10 | 2 | cv 1538 |
. . . . . . 7
class 𝑟 |
11 | 10 | cdm 5580 |
. . . . . 6
class dom 𝑟 |
12 | 10 | crn 5581 |
. . . . . 6
class ran 𝑟 |
13 | 11, 12 | cun 3881 |
. . . . 5
class (dom
𝑟 ∪ ran 𝑟) |
14 | 9, 13 | cres 5582 |
. . . 4
class ( I
↾ (dom 𝑟 ∪ ran
𝑟)) |
15 | | vx |
. . . . . . 7
setvar 𝑥 |
16 | | vy |
. . . . . . 7
setvar 𝑦 |
17 | 15 | cv 1538 |
. . . . . . . 8
class 𝑥 |
18 | 17, 10 | ccom 5584 |
. . . . . . 7
class (𝑥 ∘ 𝑟) |
19 | 15, 16, 4, 4, 18 | cmpo 7257 |
. . . . . 6
class (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)) |
20 | | vz |
. . . . . . 7
setvar 𝑧 |
21 | 20, 4, 10 | cmpt 5153 |
. . . . . 6
class (𝑧 ∈ V ↦ 𝑟) |
22 | | c1 10803 |
. . . . . 6
class
1 |
23 | 19, 21, 22 | cseq 13649 |
. . . . 5
class
seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) |
24 | 6, 23 | cfv 6418 |
. . . 4
class
(seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) |
25 | 8, 14, 24 | cif 4456 |
. . 3
class if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
26 | 2, 3, 4, 5, 25 | cmpo 7257 |
. 2
class (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
27 | 1, 26 | wceq 1539 |
1
wff
↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |