| Metamath
Proof Explorer Theorem List (p. 150 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brtrclfv 14901* | Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | ||
| Theorem | brcnvtrclfv 14902* | Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴◡(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴))) | ||
| Theorem | brtrclfvcnv 14903* | Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | ||
| Theorem | brcnvtrclfvcnv 14904* | Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴◡(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴))) | ||
| Theorem | trclfvss 14905 | The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑅 ⊆ 𝑆) → (t+‘𝑅) ⊆ (t+‘𝑆)) | ||
| Theorem | trclfvub 14906 | The transitive closure of a relation has an upper bound. (Contributed by RP, 28-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
| Theorem | trclfvlb 14907 | The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | ||
| Theorem | trclfvcotr 14908 | The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) | ||
| Theorem | trclfvlb2 14909 | The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∘ 𝑅) ⊆ (t+‘𝑅)) | ||
| Theorem | trclfvlb3 14910 | The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ (t+‘𝑅)) | ||
| Theorem | cotrtrclfv 14911 | The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) | ||
| Theorem | trclidm 14912 | The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘(t+‘𝑅)) = (t+‘𝑅)) | ||
| Theorem | trclun 14913 | Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘(𝑅 ∪ 𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆)))) | ||
| Theorem | trclfvg 14914 | The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020.) |
| ⊢ (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅) | ||
| Theorem | trclfvcotrg 14915 | The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.) |
| ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | ||
| Theorem | reltrclfv 14916 | The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) | ||
| Theorem | dmtrclfv 14917 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → dom (t+‘𝑅) = dom 𝑅) | ||
| Syntax | crelexp 14918 | Extend class notation to include relation exponentiation. |
| class ↑𝑟 | ||
| Definition | df-relexp 14919* | Definition of repeated composition of a relation with itself, aka relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 22-May-2020.) |
| ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | ||
| Theorem | reldmrelexp 14920 | The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
| ⊢ Rel dom ↑𝑟 | ||
| Theorem | relexp0g 14921 | A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | ||
| Theorem | relexp0 14922 | A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | relexp0d 14923 | A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | relexpsucnnr 14924 | A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexp1g 14925 | A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | ||
| Theorem | dfid5 14926 | Identity relation is equal to relational exponentiation to the first power. (Contributed by RP, 9-Jun-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ (𝑥↑𝑟1)) | ||
| Theorem | dfid6 14927* | Identity relation expressed as indexed union of relational powers. (Contributed by RP, 9-Jun-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ {1} (𝑥↑𝑟𝑛)) | ||
| Theorem | relexp1d 14928 | A relation composed once is itself. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) | ||
| Theorem | relexpsucnnl 14929 | A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpsucl 14930 | A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpsucr 14931 | A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexpsucrd 14932 | A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexpsucld 14933 | A reduction for relation exponentiation to the left. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpcnv 14934 | Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) | ||
| Theorem | relexpcnvd 14935 | Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) | ||
| Theorem | relexp0rel 14936 | The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) | ||
| Theorem | relexprelg 14937 | The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexprel 14938 | The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpreld 14939 | The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpnndm 14940 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) | ||
| Theorem | relexpdmg 14941 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relexpdm 14942 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpdmd 14943 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpnnrn 14944 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) | ||
| Theorem | relexprng 14945 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relexprn 14946 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexprnd 14947 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ran (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpfld 14948 | The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpfldd 14949 | The field of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpaddnn 14950 | Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Theorem | relexpuzrel 14951 | The exponentiation of a class to an integer greater than 1 is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpaddg 14952 | Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Theorem | relexpaddd 14953 | Relation composition becomes addition under exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Syntax | crtrcl 14954 | Extend class notation with recursively defined reflexive, transitive closure. |
| class t*rec | ||
| Definition | df-rtrclrec 14955* | The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015.) |
| ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
| Theorem | rtrclreclem1 14956 | The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) | ||
| Theorem | dfrtrclrec2 14957* | If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
| Theorem | rtrclreclem2 14958 | The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) | ||
| Theorem | rtrclreclem3 14959 | The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)) | ||
| Theorem | rtrclreclem4 14960* | The reflexive, transitive closure of 𝑅 is the smallest reflexive, transitive relation which contains 𝑅 and the identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) | ||
| Theorem | dfrtrcl2 14961 | The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) | ||
If we have a statement that holds for some element, and a relation between elements that implies if it holds for the first element then it must hold for the second element, the principle of transitive induction shows the statement holds for any element related to the first by the (reflexive-)transitive closure of the relation. | ||
| Theorem | relexpindlem 14962* | Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) | ||
| Theorem | relexpind 14963* | Principle of transitive induction, finite version. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑋 → 𝜏))) | ||
| Theorem | rtrclind 14964* | Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏)) | ||
| Syntax | cshi 14965 | Extend class notation with function shifter. |
| class shift | ||
| Definition | df-shft 14966* | Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ℂ) and produces a new function on ℂ. See shftval 14973 for its value. (Contributed by NM, 20-Jul-2005.) |
| ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) | ||
| Theorem | shftlem 14967* | Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) | ||
| Theorem | shftuz 14968* | A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) | ||
| Theorem | shftfval 14969* | The value of the sequence shifter operation is a function on ℂ. 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | ||
| Theorem | shftdm 14970* | Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) | ||
| Theorem | shftfib 14971 | Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) | ||
| Theorem | shftfn 14972* | Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) | ||
| Theorem | shftval 14973 | Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
| Theorem | shftval2 14974 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) | ||
| Theorem | shftval3 14975 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) | ||
| Theorem | shftval4 14976 | Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) | ||
| Theorem | shftval5 14977 | Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘𝐵)) | ||
| Theorem | shftf 14978* | Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) | ||
| Theorem | 2shfti 14979 | Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) | ||
| Theorem | shftidt2 14980 | Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) | ||
| Theorem | shftidt 14981 | Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹‘𝐴)) | ||
| Theorem | shftcan1 14982 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
| Theorem | shftcan2 14983 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
| Theorem | seqshft 14984 | Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) | ||
| Syntax | csgn 14985 | Extend class notation to include the Signum function. |
| class sgn | ||
| Definition | df-sgn 14986 | Signum function. We do not call it "sign", which is homophonic with "sine" (df-sin 15968). Defined as "sgn" in ISO 80000-2:2009(E) operation 2-9.13. It is named "sign" (with the same definition) in the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4 15968. We define this over ℝ* (df-xr 11142) instead of ℝ so that it can accept +∞ and -∞. Note that df-psgn 19396 defines the sign of a permutation, which is different. Value shown in sgnval 14987. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | ||
| Theorem | sgnval 14987 | Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | ||
| Theorem | sgn0 14988 | The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ (sgn‘0) = 0 | ||
| Theorem | sgnp 14989 | The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | ||
| Theorem | sgnrrp 14990 | The signum of a positive real is 1. (Contributed by David A. Wheeler, 18-May-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (sgn‘𝐴) = 1) | ||
| Theorem | sgn1 14991 | The signum of 1 is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘1) = 1 | ||
| Theorem | sgnpnf 14992 | The signum of +∞ is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘+∞) = 1 | ||
| Theorem | sgnn 14993 | The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | ||
| Theorem | sgnmnf 14994 | The signum of -∞ is -1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘-∞) = -1 | ||
| Syntax | ccj 14995 | Extend class notation to include complex conjugate function. |
| class ∗ | ||
| Syntax | cre 14996 | Extend class notation to include real part of a complex number. |
| class ℜ | ||
| Syntax | cim 14997 | Extend class notation to include imaginary part of a complex number. |
| class ℑ | ||
| Definition | df-cj 14998* | Define the complex conjugate function. See cjcli 15068 for its closure and cjval 15001 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | ||
| Definition | df-re 14999 | Define a function whose value is the real part of a complex number. See reval 15005 for its value, recli 15066 for its closure, and replim 15015 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | ||
| Definition | df-im 15000 | Define a function whose value is the imaginary part of a complex number. See imval 15006 for its value, imcli 15067 for its closure, and replim 15015 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |