HomeHome Metamath Proof Explorer
Theorem List (p. 150 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 14901-15000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsqrtlt 14901 Square root is strictly monotonic. Closed form of sqrtlti 15029. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremsqrt11 14902 The square root function is one-to-one. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremsqrt00 14903 A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremrpsqrtcl 14904 The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.)
(𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+)
 
Theoremsqrtdiv 14905 Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
 
Theoremsqrtneglem 14906 The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
 
Theoremsqrtneg 14907 The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴)))
 
Theoremsqrtsq2 14908 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))
 
Theoremsqrtsq 14909 Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqrtmsq 14910 Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrt1 14911 The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.)
(√‘1) = 1
 
Theoremsqrt4 14912 The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.)
(√‘4) = 2
 
Theoremsqrt9 14913 The square root of 9 is 3. (Contributed by NM, 11-May-2004.)
(√‘9) = 3
 
Theoremsqrt2gt1lt2 14914 The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
(1 < (√‘2) ∧ (√‘2) < 2)
 
Theoremsqrtm1 14915 The imaginary unit is the square root of negative 1. A lot of people like to call this the "definition" of i, but the definition of df-sqrt 14874 has already been crafted with i being mentioned explicitly, and in any case it doesn't make too much sense to define a value based on a function evaluated outside its domain. A more appropriate view is to take ax-i2m1 10870 or i2 13847 as the "definition", and simply postulate the existence of a number satisfying this property. This is the approach we take here. (Contributed by Mario Carneiro, 10-Jul-2013.)
i = (√‘-1)
 
Theoremnn0sqeq1 14916 A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020.) (Proof shortened by Thierry Arnoux, 6-Jun-2023.)
((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1)
 
Theoremabsneg 14917 Absolute value of the opposite. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
 
Theoremabscl 14918 Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
(𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
 
Theoremabscj 14919 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
(𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
 
Theoremabsvalsq 14920 Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
 
Theoremabsvalsq2 14921 Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremsqabsadd 14922 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
 
Theoremsqabssub 14923 Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
 
Theoremabsval2 14924 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.)
(𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
 
Theoremabs0 14925 The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.)
(abs‘0) = 0
 
Theoremabsi 14926 The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
(abs‘i) = 1
 
Theoremabsge0 14927 Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
 
Theoremabsrpcl 14928 The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
 
Theoremabs00 14929 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremabs00ad 14930 A complex number is zero iff its absolute value is zero. Deduction form of abs00 14929. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremabs00bd 14931 If a complex number is zero, its absolute value is zero. Converse of abs00d 15086. One-way deduction form of abs00 14929. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 = 0)       (𝜑 → (abs‘𝐴) = 0)
 
Theoremabsreimsq 14932 Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
 
Theoremabsreim 14933 Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2))))
 
Theoremabsmul 14934 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
 
Theoremabsdiv 14935 Absolute value distributes over division. (Contributed by NM, 27-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabsid 14936 A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
 
Theoremabs1 14937 The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.)
(abs‘1) = 1
 
Theoremabsnid 14938 A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
 
Theoremleabs 14939 A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
 
Theoremabsor 14940 The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
 
Theoremabsre 14941 Absolute value of a real number. (Contributed by NM, 17-Mar-2005.)
(𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2)))
 
Theoremabsresq 14942 Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
 
Theoremabsmod0 14943 𝐴 is divisible by 𝐵 iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ ((abs‘𝐴) mod 𝐵) = 0))
 
Theoremabsexp 14944 Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabsexpz 14945 Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabssq 14946 Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2)))
 
Theoremsqabs 14947 The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))
 
Theoremabsrele 14948 The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.)
(𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴))
 
Theoremabsimle 14949 The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴))
 
Theoremmax0add 14950 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.)
(𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
 
Theoremabsz 14951 A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ))
 
Theoremnn0abscl 14952 The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
 
Theoremzabscl 14953 The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.)
(𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ)
 
Theoremabslt 14954 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
 
Theoremabsle 14955 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
 
Theoremabssubne0 14956 If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵𝐴) ≠ 0)
 
Theoremabsdiflt 14957 The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))
 
Theoremabsdifle 14958 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))
 
Theoremelicc4abs 14959 Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶𝐴)) ≤ 𝐵))
 
Theoremlenegsq 14960 Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))
 
Theoremreleabs 14961 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
 
Theoremrecval 14962 Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
 
Theoremabsidm 14963 The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.)
(𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
 
Theoremabsgt0 14964 The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)))
 
Theoremnnabscl 14965 The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
 
Theoremabssub 14966 Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
 
Theoremabssubge0 14967 Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
 
Theoremabssuble0 14968 Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
 
Theoremabsmax 14969 The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
Theoremabstri 14970 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs3dif 14971 Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
 
Theoremabs2dif 14972 Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs2dif2 14973 Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difabs 14974 Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs1m 14975* For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
 
Theoremrecan 14976* Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
 
Theoremabsf 14977 Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
abs:ℂ⟶ℝ
 
Theoremabs3lem 14978 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷))
 
Theoremabslem2 14979 Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))
 
Theoremrddif 14980 The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
(𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
 
Theoremabsrdbnd 14981 Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
(𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))
 
Theoremfzomaxdiflem 14982 Lemma for fzomaxdif 14983. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
 
Theoremfzomaxdif 14983 A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
 
Theoremuzin2 14984 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
 
Theoremrexanuz 14985* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
(∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
 
Theoremrexanre 14986* Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
(𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
 
Theoremrexfiuz 14987* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
(𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
 
Theoremrexuz3 14988* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
 
Theoremrexanuz2 14989* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
 
Theoremr19.29uz 14990* A version of 19.29 1877 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
𝑍 = (ℤ𝑀)       ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
 
Theoremr19.2uz 14991* A version of r19.2z 4422 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
 
Theoremrexuzre 14992* Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
 
Theoremrexico 14993* Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
 
Theoremcau3lem 14994* Lemma for cau3 14995. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
𝑍 ⊆ ℤ    &   (𝜏𝜓)    &   ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))    &   ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))    &   ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))    &   ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))    &   ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))       (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
 
Theoremcau3 14995* Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 14985 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
 
Theoremcau4 14996* Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)       (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
 
Theoremcaubnd2 14997* A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
 
Theoremcaubnd 14998* A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.)
𝑍 = (ℤ𝑀)       ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
 
Theoremsqreulem 14999 Lemma for sqreu 15000: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))       ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+))
 
Theoremsqreu 15000* Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
(𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >