MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmrelexp Structured version   Visualization version   GIF version

Theorem reldmrelexp 15045
Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.)
Assertion
Ref Expression
reldmrelexp Rel dom ↑𝑟

Proof of Theorem reldmrelexp
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 15044 . 2 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21reldmmpo 7546 1 Rel dom ↑𝑟
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464  cun 3929  ifcif 4505  cmpt 5206   I cid 5552  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663  Rel wrel 5664  cfv 6536  cmpo 7412  0cc0 11134  1c1 11135  0cn0 12506  seqcseq 14024  𝑟crelexp 15043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-dm 5669  df-oprab 7414  df-mpo 7415  df-relexp 15044
This theorem is referenced by:  relexpsucrd  15057  relexpsucld  15058  relexpreld  15064  relexpdmd  15068  relexprnd  15072  relexpfldd  15074  relexpaddd  15078  dfrtrclrec2  15082  relexpindlem  15087
  Copyright terms: Public domain W3C validator