![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version |
Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
reldmrelexp | ⊢ Rel dom ↑𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-relexp 15069 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom ↑𝑟 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∪ cun 3974 ifcif 4548 ↦ cmpt 5249 I cid 5592 dom cdm 5700 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 ‘cfv 6573 ∈ cmpo 7450 0cc0 11184 1c1 11185 ℕ0cn0 12553 seqcseq 14052 ↑𝑟crelexp 15068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-relexp 15069 |
This theorem is referenced by: relexpsucrd 15082 relexpsucld 15083 relexpreld 15089 relexpdmd 15093 relexprnd 15097 relexpfldd 15099 relexpaddd 15103 dfrtrclrec2 15107 relexpindlem 15112 |
Copyright terms: Public domain | W3C validator |