![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version |
Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
reldmrelexp | ⊢ Rel dom ↑𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-relexp 14974 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
2 | 1 | reldmmpo 7546 | 1 ⊢ Rel dom ↑𝑟 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3473 ∪ cun 3946 ifcif 4528 ↦ cmpt 5231 I cid 5573 dom cdm 5676 ran crn 5677 ↾ cres 5678 ∘ ccom 5680 Rel wrel 5681 ‘cfv 6543 ∈ cmpo 7414 0cc0 11116 1c1 11117 ℕ0cn0 12479 seqcseq 13973 ↑𝑟crelexp 14973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-oprab 7416 df-mpo 7417 df-relexp 14974 |
This theorem is referenced by: relexpsucrd 14987 relexpsucld 14988 relexpreld 14994 relexpdmd 14998 relexprnd 15002 relexpfldd 15004 relexpaddd 15008 dfrtrclrec2 15012 relexpindlem 15017 |
Copyright terms: Public domain | W3C validator |