| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version | ||
| Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| reldmrelexp | ⊢ Rel dom ↑𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 14927 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | reldmmpo 7483 | 1 ⊢ Rel dom ↑𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∪ cun 3901 ifcif 4476 ↦ cmpt 5173 I cid 5513 dom cdm 5619 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 ‘cfv 6482 ∈ cmpo 7351 0cc0 11009 1c1 11010 ℕ0cn0 12384 seqcseq 13908 ↑𝑟crelexp 14926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7353 df-mpo 7354 df-relexp 14927 |
| This theorem is referenced by: relexpsucrd 14940 relexpsucld 14941 relexpreld 14947 relexpdmd 14951 relexprnd 14955 relexpfldd 14957 relexpaddd 14961 dfrtrclrec2 14965 relexpindlem 14970 |
| Copyright terms: Public domain | W3C validator |