| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version | ||
| Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| reldmrelexp | ⊢ Rel dom ↑𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 15060 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | reldmmpo 7568 | 1 ⊢ Rel dom ↑𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3479 ∪ cun 3948 ifcif 4524 ↦ cmpt 5224 I cid 5576 dom cdm 5684 ran crn 5685 ↾ cres 5686 ∘ ccom 5688 Rel wrel 5689 ‘cfv 6560 ∈ cmpo 7434 0cc0 11156 1c1 11157 ℕ0cn0 12528 seqcseq 14043 ↑𝑟crelexp 15059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-dm 5694 df-oprab 7436 df-mpo 7437 df-relexp 15060 |
| This theorem is referenced by: relexpsucrd 15073 relexpsucld 15074 relexpreld 15080 relexpdmd 15084 relexprnd 15088 relexpfldd 15090 relexpaddd 15094 dfrtrclrec2 15098 relexpindlem 15103 |
| Copyright terms: Public domain | W3C validator |