Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version |
Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
reldmrelexp | ⊢ Rel dom ↑𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-relexp 14731 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
2 | 1 | reldmmpo 7408 | 1 ⊢ Rel dom ↑𝑟 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∪ cun 3885 ifcif 4459 ↦ cmpt 5157 I cid 5488 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 ‘cfv 6433 ∈ cmpo 7277 0cc0 10871 1c1 10872 ℕ0cn0 12233 seqcseq 13721 ↑𝑟crelexp 14730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-oprab 7279 df-mpo 7280 df-relexp 14731 |
This theorem is referenced by: relexpsucrd 14744 relexpsucld 14745 relexpreld 14751 relexpdmd 14755 relexprnd 14759 relexpfldd 14761 relexpaddd 14765 dfrtrclrec2 14769 relexpindlem 14774 |
Copyright terms: Public domain | W3C validator |