MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmrelexp Structured version   Visualization version   GIF version

Theorem reldmrelexp 14975
Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.)
Assertion
Ref Expression
reldmrelexp Rel dom ↑𝑟

Proof of Theorem reldmrelexp
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 14974 . 2 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21reldmmpo 7546 1 Rel dom ↑𝑟
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3473  cun 3946  ifcif 4528  cmpt 5231   I cid 5573  dom cdm 5676  ran crn 5677  cres 5678  ccom 5680  Rel wrel 5681  cfv 6543  cmpo 7414  0cc0 11116  1c1 11117  0cn0 12479  seqcseq 13973  𝑟crelexp 14973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686  df-oprab 7416  df-mpo 7417  df-relexp 14974
This theorem is referenced by:  relexpsucrd  14987  relexpsucld  14988  relexpreld  14994  relexpdmd  14998  relexprnd  15002  relexpfldd  15004  relexpaddd  15008  dfrtrclrec2  15012  relexpindlem  15017
  Copyright terms: Public domain W3C validator