| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version | ||
| Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| reldmrelexp | ⊢ Rel dom ↑𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 15044 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | reldmmpo 7546 | 1 ⊢ Rel dom ↑𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∪ cun 3929 ifcif 4505 ↦ cmpt 5206 I cid 5552 dom cdm 5659 ran crn 5660 ↾ cres 5661 ∘ ccom 5663 Rel wrel 5664 ‘cfv 6536 ∈ cmpo 7412 0cc0 11134 1c1 11135 ℕ0cn0 12506 seqcseq 14024 ↑𝑟crelexp 15043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dm 5669 df-oprab 7414 df-mpo 7415 df-relexp 15044 |
| This theorem is referenced by: relexpsucrd 15057 relexpsucld 15058 relexpreld 15064 relexpdmd 15068 relexprnd 15072 relexpfldd 15074 relexpaddd 15078 dfrtrclrec2 15082 relexpindlem 15087 |
| Copyright terms: Public domain | W3C validator |