| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmrelexp | Structured version Visualization version GIF version | ||
| Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| reldmrelexp | ⊢ Rel dom ↑𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 14927 | . 2 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom ↑𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∪ cun 3895 ifcif 4472 ↦ cmpt 5170 I cid 5508 dom cdm 5614 ran crn 5615 ↾ cres 5616 ∘ ccom 5618 Rel wrel 5619 ‘cfv 6481 ∈ cmpo 7348 0cc0 11006 1c1 11007 ℕ0cn0 12381 seqcseq 13908 ↑𝑟crelexp 14926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7350 df-mpo 7351 df-relexp 14927 |
| This theorem is referenced by: relexpsucrd 14940 relexpsucld 14941 relexpreld 14947 relexpdmd 14951 relexprnd 14955 relexpfldd 14957 relexpaddd 14961 dfrtrclrec2 14965 relexpindlem 14970 |
| Copyright terms: Public domain | W3C validator |