MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmrelexp Structured version   Visualization version   GIF version

Theorem reldmrelexp 14928
Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.)
Assertion
Ref Expression
reldmrelexp Rel dom ↑𝑟

Proof of Theorem reldmrelexp
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 14927 . 2 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21reldmmpo 7483 1 Rel dom ↑𝑟
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3436  cun 3901  ifcif 4476  cmpt 5173   I cid 5513  dom cdm 5619  ran crn 5620  cres 5621  ccom 5623  Rel wrel 5624  cfv 6482  cmpo 7351  0cc0 11009  1c1 11010  0cn0 12384  seqcseq 13908  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-dm 5629  df-oprab 7353  df-mpo 7354  df-relexp 14927
This theorem is referenced by:  relexpsucrd  14940  relexpsucld  14941  relexpreld  14947  relexpdmd  14951  relexprnd  14955  relexpfldd  14957  relexpaddd  14961  dfrtrclrec2  14965  relexpindlem  14970
  Copyright terms: Public domain W3C validator